Skip Navigation
Skip to contents

Ann Occup Environ Med : Annals of Occupational and Environmental Medicine

OPEN ACCESS
SEARCH
Search

Articles

Page Path
HOME > Ann Occup Environ Med > Volume 30; 2018 > Article
Research Article Association between air pollution in the 2015 winter in South Korea and population size, car emissions, industrial activity, and fossil-fuel power plants: an ecological study
Hyeran Choi, Jun-Pyo Myongorcid
Annals of Occupational and Environmental Medicine 2018;30:60.
DOI: https://doi.org/10.1186/s40557-018-0273-5
Published online: October 5, 2018

Department of Occupational & Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea JFIFddDuckydqhttp://ns.adobe.com/xap/1.0/ Adobed     ! 1AQa"q 2#w8B36v7XRr$9bCt%u&Ws'(xy4T5fH  !1AQaq"2B Rbr#u67Ѳ3sTt5v8Sc$4ĂCÔ%UӅFV ?_Aנj- H>>,m*>fzp"TrKkr^r.|_&]|*vPuܶvoQ1mwVJUhu-I"=LniAƕ8"۲ k*ҿ[yu:.vUQ+)%F DHyVBk>Hy8jݹ q~9D4KRmzQ)^ʔ.J%k_tVi5NTjg!'ky|5asOȻ)R۸ߩFMԿ3L4j6dڜ#NIwUF]JqB/(FafJRzq3\G՛ ?~\ 6)6W4m[O^L0E&rRMض*C .]Unl-1 1r#Rj/&QɈ׉˩s6Rj=5Tg.y.·Pӡ:JJS:C8-2u]d&vUz;7p9 5VnL֢"y)">iי(IDDd| Yj0; LRfS:ktYK%*N2^m|&dğth":ey)uPQZW)gcC3Pv&MMWd&Ŵ۲mvTRoժM03*F3Yd6\8,\hݻ kߔi<k NTwSԪmljj[>->ptU%'LR>&EBH$MQAUx[$Z6vi&_a.KIQ{hyƒ j"JOC9eFҝfj;˚Ω<[3_m% lQ@4g=5$(J]Yc-OMq<Ǎ wSzڗ)k$7VIP붾ͯnV+卵*t]iЎD31~SA1éC2u)ʼnQn-Uoi3:grI8ؓWm*G zܕ)ZקJ}Y YlGeJ6cB2I NS3Q>k=KTBT]W6+SOXQgGR? telˊ%-Re\hѯ2TF"C/OJΩ6r[N.0{SpljjX1“jOsӥ;ҭhe}xu`Ք&.)yO̒ Fߑ.$Qw;9Iw2o+RVJMSOj[SoҌZ%;`d$blQ{Ro{Imڌ>3egf\O֝Uzx"䢸g+mv%Gʆ:|V[N'&ס-ޝ'kfE|K,G&˳98Juin/\\Qݿ̋v~Ǩ!rtWU d|E߫R4d}.qPw*Ӭv5YEcn~f5c%MTMkb-F>5JT,})QHg%{("ӔȸWMsYyWNRrkkJr0XドnͫT}r-jj,Ŕʍ\Q2Ri>v$5!]"JB2WɅ)]VԜUc8i|.jeRO6^V.¸ Q&#|ܶ-*uOG%JAtRZRr]FFG\۩w+?'zչSѧt jz>KW&ot{7P&2D;&\\>Q2JzܗAKSfeNn[jRrԕf6,q,F1tRfԗ>vֶևj-&R'Zi2=xv~Elbsvm8=ӛ"ū񕜈BȩlWau[]ٷBߨF~J!|Ipr3R̴#Yp)={7:G{+:\W}n|Q#%)7^-h"Ƒq:M*%J&$T軨I333׎g_- ucBwwjp[6i25$̏bU’ٱRv?G\~#Iͪb7<<}Ezt" q_Inw,7-d,G÷%T* Wg1"䥱kq/A.,_KhqŒxwvo u2ۥۧ.bQ}XκA$֣ +K״ZUNmڸII{.v{5z5ѮRme[moyƾd~cRݾK'j.\i&/S6f|b=5: p!6i_ 4j6=.si˧eƾtS^c.Y^RJVS-Vi3,esi08?H$GvZgg?gi䤟2adw릿:"۪lkSN>q-4kI܋ێe̊qۅgDoѨ9; #T.Q;7#~_Ufstb_'w~Xw1Xk,vcOt._}v}8"(4Z\ۘgk?J?bm_c!g{HZV]Fkk%~gEt)b秴vΰB|꽸}mp~E6ݹv;7P٤v+ri*3Ԣ|'O14_~7nP{7ZU\Vű[ +7󖱅o#:ǥŬ\|3r%TJX]V7ez¨Y]lc|O3V! R zbJ'PnGqVJ"19WVeOF埜EaEJωqCN5Z g-9[S<$sUK5b|7sn\7x qmv##FF\ w[=-43$^ooVSiXօv7iB۴yg>]Vf"r$J3""32!Zh[K%7GvNLs+4nB/B{vlsobJaҺJR:0g%&zR\ S3T[&ִor*ⷳc3ʊO[iozW٨%$gn:ܶWwFBԹjHP&z u&F2\f;ipW73 [; '_̽b;vib!oec dC-tS__$Xs]l9&z$2/N>%'[}b{h/{`{Ji׉׏ YJB/X%}.|+{(S:qz]4_Kѵo`^tY_4S#* ^zvݾMr+TrkQ g.8Ͽ^i>ӈǙvix>$o( ^qt*&t1oJVu-ql5U6jCЉmĻ*"?JT=K'O/|=Vo}l0b}}f?X[?/\JSBe,kP8ETJ==?.p5ފgbU9}ǶdNKk—_$8̸͓ۍ8Di\BԿ-1v{FF]|.^ۅ{vl12׏z7-R7wE?\nh\jN/Kձr_oBw"N QMBZqe-m:ӨSn6j4%!hQ;sv'm4kcM=!8\m[M4{SMliۇ%eֽR&N:{2A8)THLK3Zj[jPBx#BگMf:G1\`edcʮ?|w(-̮vXt,bW2;.ιNHRR#YwTM"<;mk\.foIDjmlJ;vxy7o7i\,KQŊ9d^Mmgc L*.T6tLeIuOH3SJQ3=F/ʿ<9\JM6mN6=<{xkP!F1QR[I$6ُimXu2An2yԒMU q f[IB-'䤯jYm52&JG\zд\~vdg QtHGXw&1Lw+nDEdC1w|YJmvP)HZ>i0BPβә?R:QO["]I_Jʏۍ>QKyu^bycBq4lXF~l [\*N>-J6,Gq(Zr5h]CwYӤU~ʶߑ u*SIv%ZfJ7)! FS*s_\|IŸZ)J ]ܜi4"z[+Z,MOZ))}|Ʀ(RUNIII.S'ˍO~˨rn}M)xxӕ0 eyҵ7YMAB]ӣU:/ѭ*6bcwP͵ "+qēVjŹO|GtY4V j[mLV M -m>",B$ GD1~j6O4|LxnNmqATNR3ε|DŽa[fmn-ڭ+FiK7Pcm;r5 l8r{#-]'nrFh2ruycb;pW=njRqRJ(d mnpckNnʹ+6]tz~E=ʕ l ZZ5jSi3#47.Lcfe`9؏v囜.F\-UZ:*0_<Νu9Lӵm&)_3\^ҹ3"1n1v_|uRʞͫr'iȧN_kH׺8xXrj=\МH)V\ˬ.Xʸ oVRC}ySU9/OBY먌5 ٿwޞ)rw8Ӫi5*5ZΗcGƱ !ZۄlmpjJ -l <R̵/JAպZuq\IdUS 48wXJJtcg4cI~aqߓwŷrm-v)G7yS^7H^-\mŌAq|"m9IBnF㏉9[N+mmy/!KKۉ%n +BdddfFF6FQRN-U5;Sv'm4kcM=Mn)\qιqUd9F%",6MGdT%-+~ f%+y֛^3SrF>6lc(֪vۊN;g._0Sѧ]ETWرkQKzGe9ʨsKA"yC y2\[5 rԭ7Gk5Mzw_4sM3hxЊ'oÍ5jsub )ͪ~tR2H]R͍>̋m6=%(˿(Wrr-܅y5(ܔJ޺YunW̹븹NsqK ]/QR#"ZMDfD|43Qw|._ԡSqTZBg??O Ϥ)/E_U|i}2 9Z?¹0:x'3,whǣ?C y-A~=daJј&M?D1_PS+Oi&;a @;Dž7[ zZC"bv:jjMQk$M RԸ3uA\=wI.AwC"^.{?-\NSiˏ"b}T/}q/ o.1M}R%:-ZniʒL$SgrBW*,Mw'N\ɇ{s\j]VryG'8f`}'N<*/`U숻z CwHq18J+vԕKss4R53/&XTt1bZƟo\=%nO)h$rBi-nKĪ^ ջڜlwkYm[̑+/QrZo%TQ;TLs($2C:s.%+eoNttq۰kK7O0m_t_pZ1SsSM7"mevFZ[w -FJ*T*jФQRg BSu|]g:ɵzjqwmltL.e3sRMچkSmjkmWœިm++¦'tILk*բQ D,PB\lI[9{%Gb R6öۍmX-MaʉA931cs..G4CujQտ[9 }G-xwl)IQz j Ó"rqe&=]꾧֎c)<kӳ+0JrRR3'TnXi^xMF Bު*tIL.[h"2"nKzZe'ZV/RrNYz]8죝n]Ķܩ>^Ժ]u-7^\mZjܣ9+Rmn ߑv?oꋘ?&ƪy^N4o=3-ؔ̿*`}V݁ ƒPu8%$ ݗ]wt;\y\>='OjPIp/nJU8{϶FNMsf"ίNqƹ(+ ݮF2Km |jܴZs%zf*eȫ?]4)I۵nR&FX + [jDh(#哑9q9Eծj8noǕZf\J-l&Z˫}`ӎhyrΉn\űn]9pʌӣ"׮Wt?N4_I_~54#/my1Xr*척aS#DT >q ssΛW;3oUaJSRMDgQnt:Ql,/ ܷfRqiM Ȼ>Cob;A>ڦWقM9X~/!'MW.}Vrߔꔵ!5|iB(0-zF=}okڢE$^wW~nokY߮\6՜̌{i-AF*9)\t9IV6۸5ZUF6R$ŨQIq砳YUZ]eyv >hI櫥N )&l JulwE1GDOuFN2| }馥uC1rޫV+^gdb&W[4<^e4YW,d|htͮsUM)۸8:{3d{AѢ)~ \#J=NdƮꮓ90 |1K$v*?мS ]i$J,C,SG?/_՜pMSƯM|mG1V1$~K>CSvkuj=&) -,yLjuFHK{c駗.SOua;BrSqj-ۍZ#'Jys7[g2z/.u4+XV2VQ.ޕ)$"(%)#Z7suZ%j }BǬݕe)Jvz8zJf:hIN|svO1O#IEcۍjݽ:SdὮvu^@:o^5cs>i/VqmVm]ؔܢn6'vޑ̗J4Wn@OlKbX ;n:hgJ9ŻyǑz8f܌q&Y fN0N;[69 rbׅC2/#kE l&2~èMR.*%g=Ft.%؝e8<.e=Uv{~㻏"EˑnvDѭ͜Lu3u0:U֝$[M5<:oi+V4V9 6nXvx&_ q Qqw3W:uϔ2yb/(ɳ|5zQiJ#r|Hw#.W?4aDŲ\ugWG;Cw鐢K|xg)##=O.dF˟jMUvWĻsr.z]kPc9"]R)mkfOd*uYf١RsB Aîh=k]ʳUrrZsq`d#r$/Ը3o^&lRWȍyuW̦Y4QDUMJ65ƒ[+ygk XK_±k#y:8(TJOSQhJt2.DR}"5[) r)6V6u5k:eXZmv𭤔!푊Q[qQ}ҹLE- 8qIZG|UM4j}Mܕ[Vwm{} Naqµ"ԈM zOpKѰ?IAD3Ir0'/q1itoB5{%wkOBn-ۜduqIzYK60{+DʕܞqIt";r1mG/\/ym[6JƫR \L=S=OT@Ix[TMm{>ݾտ֒ݸӉLYIx>+"JVNzx||5rI?C{oz8۹e\R-^\A2F R+N9 vlT]"ۭ d)t֞i #E2jB@׵=#/N+!ĕhx}I!cM`ąZ*ŻɄҒ߮Y.Z}='/oۙ3IpW̮hT7cTSuz9>B}΄&h!>lӵn~j˅IvU.'v'CSZw8QK3G> ,J59ٷ+HSg䧎hJdzvwv-cvxS5[̊n~ؿ%ַX?O0\6ne 6kn9.ϯ} *h 8_QhLݣ7q +=XBҲ5?[[)+F`=4 }B,sNg==u*Nj9k_GJ)+R~GSPBȒZ:(K]heL=vKPӢwq(NrG^ثϣ?#tC?.ͼ[ۅo؞y#%ǛjVyLSw%T*s92JTM%"YkQО.q)gCͲn8cgi6j1MѾ[{9h^vƘǚםidfi.^RHmg&rׇz:}݃}xT$ضk'5s-狶,\vpbPD،=Okf.c#cdz2FK5T!&)|ntD<+OŹU i-G[EE*FDfeaf2QƤM\UG_{ǹm%\yrGy:.\4wjPGUJޕUV7Do\7Vy_13w;[?c]H\$IJ,*L]3b%L{y.JRKG2sq,B6T}(#nW|km+q5] r㪍bJ@y{byz,b踊3ϻJ,'^xd،)JVw#.Vټc''ÝպWtbRؒJz۠8!o9IۄS95E9ؔ-e9JR{dmnッ<[~n${~Њ$W?&ՐY_? #a.ߑv?oꋘ?&ơ|y^N4o=3t=~7!/M3>n8W홎2M`Qx+ z qy8%]7_~540ۦ彷]Wq CѡwkďyF5Dum_}~P(5.(X,K9vᯐ?leB9;Jhm#3{CxGE-S{;@Fz˙]=O'!ɿ]' r`:7'2bЖ>Iy,/eTy/V<.H?UYY{\^#ѣr9^7?xoRȆ7EoS_&??zϾM?(~Q-K&>"~aߨ t7Emsϛ+?;fCr)fY+>z$tIkjn_>vnrֳki-˹l= t;'EyC¥|/BLwBJdgjۛ$s S1|ɍV%JI6KvəhzIlBYɒ|0"Sy0F>eo5W)O+X˻u';v)2vVq۳kۮws?UʑBǴYO漪e2MIjPAک\b1)DDؚKm6ZWΨgȕ۶yjڳ 2ضN[C[|r@9Jfo<_eI7q.|cÊV߷:i.:$ȋ)1%%)ADZCEBxJ0MJۥy(bNsKM9k43IwNt.\%N簤I'.j|ƃ2$grBEٌ\}9:v*!n7M(ɽ]7c@XxƱԨ37īf62cTTfFK]9wntQHͮvٱI/f|j=7}\_V5U^+:uljSȃY(XI.ȱmo1甅jڎIZ2>#\*:gY|4k\8ZwSqtyA!+];бޞKծË¥e)#5ap.QK^8VdU{*ѽL\=qmjnB5>{ Ӟ`v±5 ^k&O~Oshɷ,;6nOW>u6{RqS`)S%jp\ipdEBLfTWy$GIYw~䲭J.1vSY5z.V>^+Ǎvc.I[R{QsNR3ӎfhd>y?UJ*}~[e\i5U^͛E]G_FS(Iɿ]i8:4zj~շsW,ˆsy:%O}iur]iF5~3M:Ӟ#N06)4ߧgdawIotiz:1r5YDZLHBSi;NQc44la=Y kQIT*ըl:tq2(է9VO4뒳܂~2rq'nrVZŦ[t7\oլfb/mlpc.I8콚q^1iE~䰳mi[dۧw֤ICfdFeCsg:i| 6擣׋* 96lust^{%99UNRvaMܽo ammi$em4D6DD\nA%$$#}۷/ݕr99JMն[oT޲E"KTaP+HGkŴj5TM5xƱOS-k`ۛkٝWz;{kS}F;~q|~^_|euwnE'pSupUP)V]vE+t =ZRaVdG6= *.ϼnj9:UɷbېmF_tޫgHjVS'śǕًdkkѻ_]Kv?nT>)^e=Ar1'3ԔILyD?:-^in):{7.؂\.:V }#뺾.3r̸*xbFM aȵz 6SQ:ײj[ 8nn iFMw rR"5M5I旘35f^j='j:nNW.ʭocZvZKV^ɚJ.cM1ZI7E'6rg탸5oZ=[m Z`\hbMUR١Ȗĉ):Jin!_7Dй+f̷eKҷvͨBPR(V`y6tw*MRΝcB.ڭTnc;P$8nFvm4(D(R#R-L -2:FP lxZKQc6I("Km%$E, 78uXIFA$RQI$JbInG]c[ֹ:ZM+n^')JmJMJRu{e)7jQDw~%yQl}BZujSSf۩QZ+Dzhd5o%BIc'GZ?}΍:>Ɵivז-%݌J5MqGWTVʦh݇ܟ~Օ_6 n'{3~mϬj'J11OȻn߃r Qr\3y٘+WӍ'WxEs^O3 o~[|7>]]H9݇ZomT@]?5B:Z߂'`V_+/MSKX߆ޠk3?o7y:4R/7þ] iG߬aBRU&?r&/} cQߥGj2?C5Yśe7hU=?+ x龳f-܈czW^7p%-(\D4h{UK&ӡn^m]Fݢ:`δvj俜F+) y[{{ 7 tu>gvrěOj'5 iRg[ͶFjGe n~qT$ci ۚ0oԹc*jL[sVWqj\ݻ&6"WoK:cnWmrv)o>66(F>=W^bf#c zzʞtپy%mՉPël e}J.\Zk4ttt>oEM=q)hJjI=ͥ(%]脼_88ф;͛gWG;Cw~˘$4=uWdĜTثNDkiQL9U*O"4XP`02,Ge-k5$h>ܼ]3vr6!9RQPIVSnM(ۓ{>;/Qͱv{3&-[rc)ܚI$n{Sv3[j00)-D3z}MRzVQпj,T[uVs0\}Sid;r(ݝJ>æʺL&c[jPK0~d(FKÝW\m]GTcF|Iׁ)I3~#oX%vҦEݑؼ5Żv2qAZTE^..M{ʐfȏ2##.R}*KʛZz^ӞN*lPťLf\G6[WVQquV]XAi)5J!,$iJ6o$tPZc;Kjx_n3`qIelV~vLy{fn匋Ѿn%;zV.n'-ұdd2߽1bZksPe3TI9)$ԩIN9Vơ\=2885N\ p)/a柛w9g_lױo8ݷ iixJV& ғRi{N^_oAŮE6Y7I$Nk$|Q)-*4Z)^¸%4Qm [I%.c-OV+C֧R#%ѨCe3i;w$G+_dy| Fzj$DI(=OA gj%v/]8qԯNIS*֩',Q%\44ZZ%D|Ǧʴ6&vֵI$%8(ԬƾS&#Z. }6z?b/|Jl{ץv&mpx4Z$”ڝ4-H%dGKfM:sKSRWeJAn]>s6应-W9'H]'uȫYvgK^\czp|My\鏩w/ËQ.)]\QiS`8uL뚛̸=J"ܻi\å'-)54Ue]:K\퓡vK xwBqrH\*֕TnzC.mT=t-H]SČ~Nu╏NÅ3f|͡G~B+Xm[Q7U{9"~jgK Zoʰ7"qJ,ekSeNGgϳ] ^.6:s}_,%eRg<5⿨z{ZPun#jRІ.6g T.!]xa c#jN$Zpl̋H WZu8WmMRýsĮ?Mco~sx TU҆Q :KDG4n42.<3/'^?6/ܠڒ^yrrÿr2\D}}B]^E~^T cɛ7϶Y[<֞[7d}2%QPqOLEQR\CIsj1?\}%tJ0e~ *sk"*)&ۓEi#{1J8Hrt|'ܝRr8)=ƔN'RVz:cf]F7bZyZUȘ4x8,#JG̒?.W9XnO]KO]%]ƻ O5Γ/3qÓj؍/r̺rƵ 5\&m6h.xoeX[=<3%< lZ"2h\Z[&jW3ejm?k&[]ųj+{N{66leu_+lj]q* 7g*knأYv= q ەdxЬZ|%GUrQ3jLŒqET]1% qkXYūYc[7Ś]QY\jko\</Lc7+'hMSUc6qXyؙ~6#ѯv.0$BQi5YyIhɍiy=KD!n3Vm[V%W-B%swa97ajۗ m+9~]fKq|Ddaˑ0A]_v޺mM5* F-BYHJ5}q>ʉ.6hyDmpD׬'-_v5;5[8K[viJ.3dR:oYHHh9I7:۽fi+wm^ [)odPѱ52CZUJicSw\&_s0uBȍh32džzQflcd^m|7GѹE!fO5]]H9݇ZomT@]?5B:Z߂'`V_+/MSKX߆ޠk3?o7y:4R/7þ] iG߬aBRU&?r&/} cQߥGj2?C5Yśe7hU=?+ x龳f-܈czW^7p%5|Y:SJE\U-(a_cƣUǽXXKiȞNlmۊڭڄR!**ܤMeȽ$|X5(Ź\rJ~ܮ]>'HB0cp XFr_c?f?7<ukSgov¥iG>>䙗i.+t+bOjIܶ . i^:nm}s}(3>NZ$2Qg([".>i.ƾ)B̋M8+"- >eE6DݥJnJˣt׻ 5.˅nJGwZD~!i۶a,Db3ZQ3O#KO5/֍ozuK'GbRi᝘NV_ҝcvם ZoX}F6z 7e5_e:ۓj=AB+iܔERadMBq*ԯ DwI/Gy*mĥiRKg6skY/#SN4e$-yXM YL?^ĸNNӪ{$r1JJRSLO]Aqm>V/s[~i/j+m>z}eI"Qvp]{ZԼ:{vPAG2=T͡@ڐ#u"E*>C;o$~C#_d/HBq^YRٽzIKbOm\~żjFFGdiQ(*/i*#.FF]©m=BmpQQQSP&Ҫ!T&^>:y)$ˑÐFčI Bӡ-t!bM WҦŶ'UZ=}zvn~oT/\ǒ'nr8 AJIӆz<^uߖ4eFC1i+v!3qNyߕni?4JZlmYFXFۼO0B\m[ tʄU3s"Sr(NJ;SKW72L4̏BVdf^Ҹj\]ȱ۪(ӷm?J-KEmWڽ^4<8qu%9pŹW~877ܾeVгS(յe^C]yX͹! םm4FGȋ\y'Z FX7e)|Gjt߹#gb\ŧq_([R8[qU$Z (ʻezV2V!iQ,i$JE˂٩ a(GK'O{vnBvryRd-RK4=qxZJMl_CuuIz @Rt㮽޳!|68\-l[џ84-2Pu" RJ_^OL>G1~XnBŬw6J0*Uvlږ1N G1q9IUm*'oWu][&UyYZbBZRZNfEJf"+2nF~Eû7n1xv.RUM$6 lAxSQJ&n5ܞwlEói"#>4׿Q.nEq7Oko[1wg8ZQwZYiqtm&~">Bo?w͡ni2峋NCEy Ҕ+%ZJ ʩq*fpˤl,~^Mχk1+:ݕ z&Y`KLӪУDr3[*Z :(SL&ݻ۬Vqsyԭs x|iI߽zZrg.:mp%6ԜvgmpIUt;QbS.Է) ǨKSV,*lڌ|5Jt3#NP.=+OZ~/G سIgbꥹJnl_DUM\iM!֔wVZuԺ,yV.Q>f v:݇WiaŸN5Ҕ[M7SsrvǣrMW= \8ZW-jsnڕ.ZnF2qt ً[ٻޘY۷Zm"Jxr&NAfA-݌to9s359݆mZ+N1-qS$D=17 x׵+%_ ve4ir6Z$FDڗnFtOr'7'{9C˨ꤡaYoace{Refnft RR"4%ʌm:Sj3)OdInTO>X'vxV#jܮw9Fog;5.~Y5\~18YQܹvj4+~t7S ﬕs %^۵ڴDZV69R^Y+rj$ԇoJKR5wB9C>Y:l+EǎS{ʲ{T6Wi* ^^9k/y/Cs\g*qڵgn4T8mERr|Ti+iPe;;.i\EBEJ 丬i9ɧM-ԼsGDrZ>r#R>~X9y4b棇9JwV۔%m(b[Tjvl}۩~nDԺ{Zo-YuK1vx.nWuO+jN [ٮ0%"΢CdTJK-RަH"$I(*ve &҉FzB,_Vpqp9m8werv')E;o&QE׵^d9˦j\_,ڵugZȻ̧8k+jK{wmr@3ӭ2 wFkzFVqs1؛.v'I%$[iT]D5Dl2 nk7qUxԫLS+sا3/ΖeZYK<["%-g/kRs:f3;*E ت wJ%)5&+&rw*霣i|sMҴ|;R+fm䡩.!**dӶ-6s6,]zAXMWjmnz%SJߴm2UXw7MQ%<!tKys#P,W>s;3IYwx<+i_\\\U6 u7P|xbn_k&ӓVOe䦒 VUr,-㘘"-LZeOSҠթrEvq8Kf%5%&K"#%vD/.ZYYŏ+p$nZkvއuW9㓱Z G wYIFyf)?ƎUm5ԉ/'k84{KO:rQI}XRuԪ|*lu)3qZ[mSm5R3".Xcَ5c®ࢫI*۳~wRϿQWޝ(EJrri&ۥ^ʶ齲Im|[yb;mnm֩uiܘq>E+Ikx߄3r33-5𹻖09ϖ9[Tz~mr5NsWl$oPusޛ^{Z;);sڹf\3oٹZmԉ/'k84{NO:rQIBø8Bݱ3n֤DiK4u& ofSȒܩx<˘|N0Fչ]qsp"}! QWw@t4ӭ+cO5%]'*{eM߲DRO1y*q8w++e!c߶ܪlZWّM欼 CQ̼빶lX{vib/V/ ai;x6~]+z]MWB>re-:lgk}պ!#9?%܋V-c[z!W?c7YNm/jRr[HOzԻefճ0q15Zp#rkQQ0tU-AmڵP/cȕ?0cZYj;:0ZM=D6g ?'UN+ձ[K ܖB2'xq9{|۫N0ku 7xaj;n\ 2[VznMlWiKbSk))f..)Km)&bGZ=>OR܍W:j'rM'wYz&/鶧{Sʵb"vջq[I-ՌZH._x*BagC'T(Q:$ͳQcMCKy?3g'ߝqnT);qs #ؤZ}OOI:cfnc8W~qy.;^pVl]Hԓ>^H^@7-AA܃nmL(uWܻS߿ Td95Bdh4t6*dDh!EhI[iŨ\L.&Nc ܮf^;$R)\rip9I|ٺ?#R.ZDZ;/]nݻqs\QE9M&Bd ]N mN*D>tgbK>+ˏ.!23]BȔR1ɝ^j'k2ƮqBQq[$di]icV/e`޵B.FIIJqbi>Ӥ|p; 6${)RU>_e}^dzdfzi %ekRVUS?6'hׂ)5.\+qUgzE2C˷ecŏ^֔ibk shesFWJ#~> Wk~ݨ}ڶ>ơǚ)׽ZƉo~B-ڼrvoE:Ʃ3ۣK7+Y`WirS):{>ڛ}:wԨ(J_";6R%[u&ƫdZ_\'np| RJwNeTW,=rrbnkڄ[M3ܴz)3- R.?:okۼ0TU'w{6&w7j1z3ON'fGoO?)S_bQ_¿R(^ԴԴG.EtMڇ&RUiW uQjU> Kiu1d<ѥIQ'RQ1:O/lŗᏩiʂv&Jc{D5 Tt)1.n[n۶X}RjqnOʽ(~[Ns{ސ⛌uO,kgo֢dRNQȄ .'6W!׌P朼tdZjFGE"]K@'i۪N;sI[{SOzk>`rRR+!σj8&TjlvA̷Q?HyjyLHNտJMjܶT۽lG?SnKN%<‘ nq[N0Sq[Ta(&t(|HGO~gvkݻTR4&Z$#ViOY1r$6YF?e4U/Mvxų:zbU^gQQ+NW_'4jfz^c'#`rvrڡ(IJ/J ݦ6 ]-CW |_{v*_q3^DZ}Ic6Uڌ8p7{crZq5ki`)mU6|-Z5^iEz3P=:Cu7DF'k%}<C-޹ֲ̱#\,(f88%X-N(ck0VLR~} G"-8ӏ/ϰKq?(#nrVTmZ;zióM4 m |UT'C^_1X.gXM{%ʤd 4\ovN":"y-,T)fLQgۢr=/CƹǨJVr[a+!rT|%Y\ٱzsS>jͱ.oOc6f$q% ǒGo;n[];ߎjrk{~\VۓNIGn:iqxo |~t5)Rxעri{Vi&NUOl_ѮMfsޕkЄay.0P{7N((BaIP$ K"U6Gl ݙqJRu+qN$ m#*p<|{:>-Ev=86N*MM긭U*uѾ?/^o7;'u,h4݌xښRM:5.(/ \իU.{F^rmF-Jɷ.>Q"[4xT^OZ~mK}T0ݛ^SAo9u?lX(' qj%=X}"^e4wˠ|rܫ 6I\Ķ;Ӻw!'ڍWg{ i U_9Avhۣƾ+:vs/MK[ɭīe{`Zgb}r[i'GE2J7Nez579wRq+Un ]J.cJ4M:h箽Wxxm^ pc\wcN%'My $$| :$Fqɏ¾^қP9J6Wxvu}ݵP>Z'FFdg"-; [¢cmWkÎT8nG%ݣ7*\խCLRYZͤiD&J#'ehbSyXK|y*ӞpS̍R`[pTr/Eg)K+92{_ n3zwz'oŸۤ+sOj J:`T>Cf*lwd\fYOP"R E֢̔L4ɥ :;.b(B02rJ蠟9>V'9M%)IqnhP<%,r'P/vNSwr#w"ݨaqc(|{kd=^0jTMR2ULNz|.<|^PfY22##!,K~E BEJۜ&jRNsHަޛg\r,v؜.jK3)[EJ2ii{KEiHP^&]Gn8x=K}Wx/KI9-ϵwQ%spܾ[^R}S3$qvq8M[ ozKxcqmJ/ӿ{_}7&ݨ\f6ZSyQz& 7ۉ[8~UNn|nkiTB+4RI8'Nc%tn{!]Ȋo.nEmʱn𵵥J A+wy#+ikǒڂ;՛s85'KmE:Ђu""Iģ5p=БbTY-ͽڔ詻ngL2Q}$de# fs^o{DUUsfwӶ;s1T,ǤtޒQ\෼J=.tKU,7čJ5 N$y3kdSMQU~mO[03 $zAڟsF5^뜞"Կ QHmrR"ӳηer+ҔZ]hE-6Jmt'ޒ=O[sQj)6K}?e4v_KfZheޓ=BV[bY}lݒTTЬ{ȫvO_qpRApVŗ 6ju=*BR)g "O1yhb=tqJ gtm\b3RY+JQ^Ō֍\յ\>+uSi{=x ^w;uӘ#ĸzLn*$anok߷CBӷ}5Yqvdž<( "_OWit5:EZj2 B ρ1̊fi[n!HQF82q1牙nqnEpT(2RMoM4ϳOu ':֧_Xjsg jP^(ڙ{2%E͖j^}ZU[Q$'U) <܂%!s"m R'G5M0<+zM6qYm$ڕ$3ǧH]?o2N<8F1̻r_my[Rf59NjpzBnl7*{.QP 3N&^BLJPjAHCK2Q}$#~YMq8 k(MFMU)8MEqTy+Tʞ-ar5yܕOXw!e;q-Jqܶ䓊Y:LC UE{/t>r"lI9)3KJjϤA 6SEE$d߇3KG*En|P\ԭTn6I-ƍKTj<1H_zwGr19wF N8ݝ+a9ɫM6mhePi%mmD! """"""*1bRKrD"vnrM۫mmĽm]ӡiG~e"˩ lhRTMk^MX["Jݱk7_ޕ*DqĒ&flՒ}`W}~SմZ{ĕ~wm*/{{ѹ_-0ط#P]xlڱ~Tn5wi*lڪ (JxioϏbqKYR|!|KN53 OS222$jzww%i}>N)E+rۥ7c$Ofl/LNث\6H9: FY󡈾I)fB֔JI_ ֣^: 9mY{66㒢7Uj]:.-os[R&gMF3˸#໹kmjq^8W"PΦURjʄWa˧T!͋ lW48JB2ko+ /Nw QwQzQ ے%$ޓ7^YL|r7!v%Trܥ &|M8~ybrn[RV gSn{{*#2#ԽᢏӴHak" ӌcwҜw&RJ07ױ>Ļ =^ BɆ)v32.M1=#6%̠tҤnzqMwԣ~s*%-j|_m*.Yx9Sz=)qE4 3pk+,`=kNRڥ=B=nŔNAx)Q$ԩȧ4z3t#Z2lҮYn$S%y- JzGpu|LBV7ZW#;Wwipܷ%(6jFG5#{$D"uۭ~]֫SrD܃fҎӾ+Tu>-ZTQ& N|$沸ii>eRWݳu'[O̻j8JۻEѩ[]vni= ڒ,[_%kC7I3Nv$4ɎЈeٸoUu:[}Do5|zNq=Tre%ɧ6&~DȍF]ƞG5q m]/w/ \ʲr8=oʔe9U(W"|S]uZd#?Se[W"ֿh][-7Nu:T=)R}.;ml*5Dlf $fF(̏T hiIUU4Szɕ t(%_|2 ~6eM;TƗK[f&]LK^CE2[ȏBOd;Mi|cx,^6;sیGpQ\NuJIFTJ~đArh* B"$H쉩eXPRj?sl"ԥ)su]xpԴY%VESH"ЋJǰ K&5^Ukzׄ8kEgS2h&Se\ Yl]WҶp-ZUvi7QS:4byqOo+[̺腋[6-_Fo.6[7$p&^ _GZԸߍkc.qqoI[9m߸YxOZЦ1uoiSH)P9Uʄjcq= S>֙NeR><;+ڌk%_qT].srNO?s[=vH[]RZHRMtᩗVؾ:/~u)ԍdg%=edVrISb{6vSu=(ܥ)mTv/J}̇8 S3ad:^hBSf؉OɔLhI_1d8,L><_A0y3rXq"'(۱;mFNII.v5_(^q~X>y{3צ I*Vܛv/jW' T'NR'j%ꔩ:mJ3SB}΋!-H-RJBТQoedi9tjENenPpke.%4]#{:>mkEɱdYWl\\\'nRM4&U>?Ќˉk÷!𴪛]]5}UqG~ݏI"O~s6(Ļ)qO~h}uԕd}Q~G,oE!&G&/]_H-O=o{k\̭bkv.Ô܈+;arZx)m?M\3lU$mk-CFXjTv6u' g:Vn_*qk:VC A%'4JV%EY)#BғO4<e׿jQQ]yUr4=wm[K1r׵%Iũ-O}|kC;/VcݩWZ)EHdžTru]8hgĵ-;=>U_ InvTm_jBM+QiF"9*{DI/iuo(=TzϖmPQl_v4z>T*ȴ>YF;ε\t]EH4ꌇ[VrLzef 2T^V>g2~kg5~Nק;{~Z~W}&ŒBӿS2$J?~(Yœ"˲ߩ\O]: J׉ښT{mmIѩn3˧)4LdFZ/zUG>U> n 5& ϴ-KJi2o]uKljvK3$bԔҚV旧iY5.ίfi96v7!v))FJM4{jG~Jt/lUE%pTAFe4qQk\ve۽/u/Im+W')v{\-E|Pms7߮DZRr۞/mu*1ՙaB܆ -xg3#6ۥtRogʌU)׎]ZҞNnŞr}F1Nnޞ;cZ{N}ۿMiuxʉ*3qi'9KHQ$WJxXyرŔe~[v5~/jN9Q4o6rJv FrdxM*iRjMzUinHdн7ᾞS=S'7 } ̽zt7K|_g J=Lq+/Bw_\ۧx\HJUPzQ<hqF[V0x==CsU7q|^ {)Iq38$_A(VgcKu06Ƅ"%i~_ˉk QCܣB8Ku/񋇵u([w}$F|8TՠI.E !;RJ^}MɒD_q2];Ɖ{5}*n7nEInO{Mwv}&q+v [V}Ĝ@%>#dXQ$f;iep.GquixVt x6bj͵mlKقQ[T]zs/&yەnM'W}!Fp_d^Tu N{ɻ'l{խ2.sTu{W^H&;1s)Pӛ6>$mě;Łnj= fLT)>׸+qReɴ[UR\L*P/!$Ӊ3Q 'K=m~6XqW3^W+ųO_[F$rR*u"T%@O +%# ]˽!aܽz{ͷvQh쩎]hGތ5ɇ*DzJDRNLi 4:{~2FmXY-zzĽ^f=]uū{/+&c:Ma{ĝDp2m܍kHș/(--m_vݮK(V{R}.k&yƴ7i^4@3f sK3^Ř˸B=]?gt5KbZB<e;kQLpxuWC}n 5ҴepB##~q= `x]KWF {GfŲ}?G.I9pjWkU]>={7q{kO/^I3==f1ɏ%nnʫ/Zu_yXN<57ۍ'vy/"8넭M2eԷ&Y,в33%IkjMr7xf nmQkX4踼>a-GcIeތw&U=-:qnW)z¥j :WqSZvԒ#j"KrIU)%qrmRoDGQ~SYRsu*V)  ,/x)MFD6O#]z 96[Ui(JRfw'y$GeUީkdMF-ݻ98F2d[o{Rn0n-xsV6Dh|Eb2E:KCOӪv4SJCr"J!!m,hRLD| ZYFm/X~ΧfrN&4Ƒ=Z9Mh.Mܵw/BdrܥniŪ8ɧ|y%œ[M=_tj?F!z5\evM:\ ~F-sg钬OWq“iiȍ<Gi%%n2rqͻllƑ)okw7}\Uk-:&fj솘XerV9yZuʼşdFC=rmo%~ZN78X(N)_7.Εn1MpJ}62jjJdI";R5&iLԸc:jmqiQj$ujp\{;v5B񥍪Xn Ą4qOERjzN(Ga٠䌡)p*v(J7#ZۻZ8O W uONb+^Qipv9GvֽƼϯrYƖKGJQDNPhRJjᡧC"21"9ѓS1;R_O7/WGz)8fE%F2ukmvSov/iZ&/]~KmI[:^~ͤ\kMi稜\ywJt3W7 8Ʒ~ݥeFgѼw"8VVSج\뻆}ݭ/J6Q)d|)zU3>k\L=;ow֯gN3pKѫ|wmkZ$z^2R:E)f>ς нd|#׆?\ǔpV{;\$ƵE%-ͪm0S6[n< kE[}mvE4DDZ^$OZ0*$~XUv҅B@^?]so#%ojw;Y#SxxueBگy v^i-)s)zV jC{7Gt.w3v,ygg8s]aE_,*E tY5k٨h=o"m泏:\6w噓aiL׎n^c\75AGkЯ0Lf46َ`egZ˓p/k;̛]kq!ݸzpԭG"}R9Ve>ˏHUjJ-&7nrnwG*Xv\˱/vN}O)ʼn&CV͍f̵]r\PMB-6Du-#RͰtRN^)mT _}nSȕC*_xBuTkJW[`ɩ`ejvsngP ڻ.-WUtܑqԹQj)t;vN&RNũT+8%IXӃ5fK՛-d9 ]CƑm|nZ-6=Hz,*aEm W3VzRšdY~Xf׀Xx"]s;)5u*ُHB BRGS6bݶؿ 9j[1*jױga7oX CUI%0v#~\-O-Ꙛuɷ쏪&5mY٦M`LJ2qK~HZbr =N'YobI. (^ ׾{_ ?OJ`S`3BN[}5w6:ǵ/iSlt=4F*d&T4y/#. ɵim5Uֲf 眕6Y7 fơ=3dϕq뚩$qTM-%r!$@A? ޾V0c~{[{;򥧅a~ڵ»&ڄv1ek=wb MLkNAԬw-x>~/r=e73VeVN)K%Sښe"+3uXuچrn ֺVzscJ峻m}vb㶓n\YbIUBT%*,0nov=;z꣓S/nSXSpl##k9mXGrZv^Gde!ŷRԠzQyjC]`gToPov{j~KRBMY}i[߶9KL2ԉO0K#m>wB[ٍ+n[[b٦DX ݲpo] [\m5qdT()mo4Oy9Ie b][wղmM~vmi۱~t \}$яimRk(L c Cvk7r9_r1 ;zv|F@KyZ[&jEji/"6$69ml#e]9s\{ScL}Ȣؿ0q/nZ*t,CLoD߉Njǚy=Pgmu6^]l-["çUʖMlʍp-"qmU>۷uFOJ%Ǔkx 'g=睋k[3u,{³WɘݪF]ՍeFX"Oy\,cچ=w/gn Ļ]#2? vqy-gXnR.^}ݺFs{ŝG]}e|#0mjx"ƬWكm?rgU^xVB":Dt>@LRbun~ݭ,w+v⪕;\U(RYa61>#Jm˞Μ9g9XKaG='u8gf}'qy#ɉw J]We.ʲ-<+&q%s?2dњztҼn`cΤmmqMdz O[-ߩӲ&;[tmܝVnr">{x<8U+p:Ig]zjGkt,uzf}dؠoJaکqEq -(:d<պ=eKy[˗^%ZXkX[C2߱\ITTLGzANM￵i]K>UsOGDDD.ZF6* ҃V Zhz{'xp^`wo8r0h ZmJ5"jb[l=yUu7-;7IT%:jFjߖm0tzU'K)څNۧYJ)4IQ}^KWm7kSP>q;ނ#)'n7&׊r?óM{IwR\j2Qn[v pe#/tAF\ϵ225q֒om6z})6҅*oqDsMf CNIN=T S2t,_ѧ}kveMF0J\Rnnݙܹy[rUc-j{yGtkQ%s]5qB.Nw.JN1LvR Ui5J ZESQԙr):MJ+g}χ!2;q([jAud][ljVK3$ײSJI=/|&tl'*n۽f.frܥ jQO8>&Z];.|7T/C}$ڋUmP2Reҭ8hFF\L 3~e v\۫]ݝNmrnB%*]Z«hKc=BTLG :V74$=Ǘy+EX'4tn(I:Ѝ;Df8c,k1%dJ6.j6ź{N~l6&*fœI7 WAlGOu-ҢH,,(ǔe뿋쩨kM܍ZſgRvQ' 9)?n|er˭|I|-fGK.rΛp8XV1%K6mvG+tc+qE&ǸC_Nm:l=_/m5^[dߌڇ.c<%:)tQ$Ow~-aY;UJ>=F)2[nk؆?훐M=l6[4(O.]2#-H^n#->&mp5~Fӛ+|| S,xag%qkEUzUgæBhߕP(7]kFnq?֖CpruZ6*rEڊtS|*tI*E}7R<,nUU֫^I7Q*mSly%rdȓd8hE<9oHhMfNSRj[i7D[Rj݊+kდq{"$$H?p\̅S?㭻;t~R߁)^/>Qj`yt[w ԛ;²~+ߔ_ YW~|o]?x^ᯛ `ʼn;g)T@vWn]>&4lp+$D̢1l|ȨF%-}.9[}w~ ԠLM9hСablfe&QoW!s?wjLK?s7yO>(=C~_nyǜu?v3vyo oI@qV-jeES^[9WoSܝh"l2C1a͔CiJ@3:Pճw=/7ovuk+\V;lDgն<[A+rX~d;m!_s8ݖ׷;;.0llUC+?i#_crʙ1~C.\–q ul8Hܶ2m`ܻM3Tov|Bs rɵ"oLS- DКw=Tv@f'6|YlD͓Y%׵-#Ѯo%:&!3o%\J<02;K87>^vgƓ# ;ݝmz^Y6=PS39U%~ &f# }o!muH;ʲŇ˷yvP+&.7e[3'vR4Yj̗IZ`e˽3o[WU{ m[sUbۋZǾۆl6~9'V*.\S2<Sd*zY[aŶ`]C$n.v^Ʌ dng>ەZ,Mmϑ :n6nϦezWqUJ4! ۇ4R! =>>Fn|Q[{pRO17ƕ~._I''00k=b՛o}Osðc2'o\3}ݭQ^2 . R1yKȣtAݿ-uܾw!`?1Whn|gzUo[ECWwjUIן)^h#1ɭ!/Z np;o;ΗŻkXs."6E`Z1 עӐ9Kl8qd q} 2Stt;#j>;խabONŗ=fwP1j)l6J̶|gV2`y/0E˛6+ԫ1? 6}KW c\KoKͨ2ۅFw–s*TԞLיuDx .kCzWXhy۶gLu|%TnupǺl-S* PRaLnT+c+*xl.v!.U=|; !_L̎뱚U=4hm:ٯ"y)$:>%(n}X'p[ȴ ^˒4kƓmzDx \ 'NqamP7nyN݅=j7%McSڵj%STy qXymvCg{w/w=wSW5r̹u erծˊsOm=DhEҚRb#n)QOxtվQwe]I}wCa'"[ۂ-z}2UuKP$㜉ԧ:mc<Ý>RoL?wu|%ҷ&K y_!y9 ??:tq3(UU-lkS'ɸ@jdzQˬR] EVPW1DJq2n:,c|ǻ̑;y{X,ۂ.u.b˕u.tKBjQ"[S園S`ٮdNبeJ&9Ơ ~0a(Vm٘L+Jr*vڑE( x0+tp˕ n';wm-ޜMOxX>{#2%jgb2M[`K*\5@8l'e=0u+w ֘鳾{y܀:R*Ya]"Ӧ%ktynlۣ65,3gU}{GYrb;ge'TKwǘ.,rpܚV]Tr,!dp /ԺU,xՉ>s׽~W5oTh yx?xrrx?)?ilbT׬,z$Ԏ.UH٠\U1pU:]JwSrGZq8àd驐,N67QYBӢD㏙W!Q25ϸo9ms-7-%3CihO.J鯽-;MZM8ku-7k9S$8]q2E(}bۏI[DKOK}3KUB^u %Y,u.-&f#]'܆o$x`Yu,dzwM;#oKxn;\[d7}Rb+*Y䛂ZuBӱl{j0O̓}LhK;[aֶaGL{Cb#S.T[>߃F]NK"u^LUʐ_ykW?!GRj29͖qa'0[npcDvV)qz9R)PۨM^aJx W] r>];eN3vxdmĘ(5W2K1䪖weF{mE/QP6\u54x5[hۮ-Nk”i[lUgL]J}5 S:EhiUrgHl!ŒJ$pe=q^b͵Q' ?6|R\,JA ڵ"TDꈭ:ymg`B5t%M] <N_zv2_Ortٵ/i/ReӮ*7[qүqEG* m"[I:6e^p"I$jԴęh!m)]GZkcjS!{e^z}+Cѥ9;R|/ֱeiUԏCNu2Zhcٗg$ݭwvr P8*7/Lk~I'Km1+MW%Bk|oOm>-#qj*|Dbѱkn|n{v#jĮqNpMIUm(7Liz;{ҜݞڝVƚVϬ+sO!OstGvxӉ']uӎ4g_ 1^-8ۦ k!)Ύ5O;YSB#2Zzχ;<.ֵOtge~.(RC#wFZeGZٸ6FFJ4e2ˇpJT$[wgV)q6muDGJ56q\I!̗ y/I~RtJ9kJ]Iy*'FN0s.[l!fw'y(7$œ WƫgyΙdMEU JQJv̋vmrۖ.jWR_M֨djYgSj0^\y'EoECjm$ IƩK>Z28J2TiJ2N#}.s cArl嫶nB.FIJ.)۔\ZiM>/hLĸ=C1s[?YMqp|94- 鮝𦔽/k^#NT(Y LS$6˩}{;5 )B۷W$qpN)qqoot}ZDVә;7TiK|6f3h$dԄ}fqݡ>Nb򗉉+ͶO]>ߡ_VtYf79ڰիF sq~prս|QM)g%l0ocJȨHz V;Bb/kLAcfPJ,ԭ{ƍgpjNR6VSI*$!yV足jᇑ.](EܣqM\qJ2eZT).<9UB/(B0j)mtKEj#׿fDI-=rZړj|'Nڤ]k*i$5qt"ݙPM6E4ke^Z8ۏhz$Q(R Ay2zfRñnpnkbkI:=j &ΝșW?׵d{+ύM'??XqeeĽ.[o=UxFS=ӷdZwenՄ]_X=ĭVa* pKs0ބۍfJ3 gz̚i|wnxtjc¼5${(1fXQ65ȼb̶Zkn>%FQMJXӡ{TZEVNᖣimT/37cNJUPnP҂ZOE~"-Rc4^b- FEͧtf5[)S!OZIښݲ͑;tvܡ+N)AR=hCNn;wL16-:特7M$=Tҕ-.R[HٷnXk sn[ҞD-0WS9p9:-Ϸ-jѬNu{ҹfv)[Ľvwfg(ٷfe+0mYj8Q1\ݧg]Eǎvڿc!4#j5̋C2"}BRriFp7=ô\TZ:\BLfj#I22װ<;صZl j 6:l"6]۸ K'6RTѯ^ئOԓV\?$x7s#r:Oh{ց=MmuHԷd{pN /܅:UE#Yy+(SgQ(Щ)RHzw>^Ѿݻ>mK&^ '$Jۻ&w%F|xfz%˳ L~3N?Cy9 v w/{ƿ kz3x> sXv}vP"@WyC z`'톽Dw%-tt yVY\wmuPYQA0iG-2JP,6/gˢ]u.-n!Zw.N7Q]Df}Q0({a\@=i_X7gFǘ8^⻲}G MZ1)WEfO12G+=-B@z\`||w6ċj߬m}UwRox֢I &c~XGP6Qndpvܻul'V7^FJt^{b^B(L~sѣ6@߿^xqU!ڙ5|Vpvef-uӥ^3  FSDɯKD%0r}FF穛r7 +o"V8tv̖NQU!5uFd"bCr^bJ=֤fM#ʳԷP0O-9xRBm\=`r-:;~3Tl(nXtXi%2Vٛ#vwqƴ`L@"H‹qW.j,JM5B[)WܺUeZFqc'V˷1W7V̾-MHФwn8N;HPSdݷC7&2j.W\τGŎ'Vb]c.x+Rx1%C2T{myg[qU|+m:M:շ8҉yWd)ՋWS%%:iqlʹmGwݹ WnNŤѩ5(9hTٵDdGUi-)vSs2 2{OnT$Xck n:¶(lASLeȔBjμPpTb2~N2~%^k[ܗ[Jzs0ӓHBKq[}JَA-$dFQgjxxFv4r/x*Rm% `4J(&iv7SkԲmSH1YWmx 8n.k']:Z˭_W >ڃXЩ. jTq%Aā[E}amc]D:rmHRiu:uӚӢ\p(5-q%e)(۬ҖȽIf<߽pr&ݫVfY91q2ĭEQgYbTGQ&,yL+N$[q*RVۉQ=FuTܻ>f>f㋳8N6$܌n)9&»iˤsX,݅܍ȩv+sRTpO}d?Wn/Inpȸ%O]StQO|v5\}7Zwb.AIVK^:wb{[uݯcytO߶S<{8KSRׁH̏N7ۚ[xkwYy_'ZӵF+>쌛ZUĦreE9F[24De{}@:ExWs-\ǻ7K-\JNvEk%:s˙#κ].oͳ;լ7wB6nwu:$L; DkI#Wz.:Xp(˅v$Sq,wn\qIN-e<5Oe+vuYTpcojUI_ާP8 O 7&VL8z$_B-H-[uh]T{|8=qVRN-:Ij:7PUtXϷmy鉿:RIM~33ӸS2#׳GdŲ5+/Bx{(WzȨ5Y㞎#|˖+ ط.|e<o/rߔX>7s}VE.OVti׽ .5nNJO"95{#q}Ay9do]R"M6z\tnNS-D!@3N_jicWsy*5uٮRcWv/.,j}=S)j5C^> Ie =gu9ӛqjtz]۪TMoߧI!Ǧ¶m:,"[L!{qAv-o 3{"KʼnrIkfٶj2ƙ؄S`7` k6jzޞ?e5G&6uʷ2%ԒRKE*G\Npom F/V |C0.q_eenƣ<5Oh'67ɪn[SĽ{ڔjǘzs;~׌(ۂ`ܢ1ƣ` _l9Va6%UQWh~P~\F^ZHR@:ۧCJ{ôGeBh;~ۧnU J\O+n2 RҠ)ng}Kh{5+S×ܛ.1ZjG)iRȤIN 4%{oΜ/eO[Nffd ĹK?nnԼMqX'܌nZvq<ķbFnͪaQ`5 s,M_լ?-@_{w{ӺձJ}GF[%v\5[ŒGkOw/ΜM9rjË%2+rd~+󲕛C9U۳r[aJǭm|˒LAʨSCq[XMۺoubfp:t+ΤĻo ][ zt-*67kvS7D·MMCQXm;)܎n_h%]4ܙnRk!]ڵsDUF"`R, &#R_*[z*ZqFXɻ]7|۵w+'pFDەs=r./ᐚm3Hשy yD"jHCr':sA65نѮ^o1V/ f;nFr3VM)e*- s D'H݅fӧ\*޷[k<7u<-]֍Q8R h|p=WlW3s%Q %3l}@U-K6f-NϿu|ڴmWN׮[׸F*mW\%r! C78:޳vBG7ŵ.JթԚ2x)ST!řn~9 W:Wpܢ件{xf8ٳwKE ҰWxVB\qBZ 2wMb[lGSnyԚ~z9ZmያvoN2Afnݽjf>)j3 !;gOYʹK" Wftڎ+׭b*2ϻK>ۢӱeyԪXISUm[z+ugX%0lϏnvg!;t{BqPj>PyvR7Cj]O%+ݲ :qiMj6W}3vC/R=4Som]ŗ=ю, TF6U_-\6MyskwMr&Q\wjKܩyMϣUj0*}RZܷSdY3>Zjqj6TgzpA/M`/Cmл,޻feE[/+uk^Vs1W$G(JsW2ٰu*߻q*Y޵.Wi:ur5T),=0uRmho.twܖiYwrWHntvEj8qhf`Ͻpf(R&>Ki%I7$QӖm-2 ~yߗQ-앑/ x[k8nw.c㩵k}]FkbJl:{.(˩n0Hqvαp7 귎.Gupx[N`Yq'+ruU7[ү+>!xrȫoSo]OC# d^Q]\>!ƛGw^Mx"-+%vdX-:M2UR%d>%l ioSu6lsj7D P>XxHz Ukà(n^Q V>5cVtWj SEiJdznyej[lE' 3kuٌNn4JW)gB {4 j6&]' m-(ZMEz8cz>WZ6#7+[,MR-Z!4ܓtCyE|umj1ƽvƷV\;%>Q :#Le(iVz5 4ũۤUWxX ^(ҔsլB2w-V ^R+; ˂M\z+Uwr+RWY⺧~ Q*JcYSNSλUd8in=v K낫k\IRרSUaCFmϿ5̗P|u ZTԕ}>oYѲ1sfP+sQkX8Gb~6r,s>^\,mGL+7[n-E\.Fqḕcl*Jmjb5 ,m]c}NXfeVlǸJ5eˡ$4%g~N p4Y*WwW٧<8v#;qԩTut,m"#Y D\5V`\\Lȋ];LȇiS6ϝZ l>LruR\v=ǘϔDg=ԈdFZ+M{=|,[;0>RiSi4,S5}yxw&(E7&fݙ4UՕ! ~'Id)]ǽu2K-fޭ \08Vڅ쓬=Vy^^ IhyKR-B#Ըr=]mܻӾ'*Umkoy rTqT_i,/8Q^<ݤ|4ԻO(܄"'5N~#m.(Ҿ2i6Uev&I*<}҄$eNtÛzyWJubW^iBW.܅Wڮg]irO6Ve90sgv.+sV޿aޔ[p?3q*FutUo*eL\KM'EG*ZcAFfG5J 5jj=MJ3OK:k˝'NMB7m3uFҕ\-Ywg%PRqMIyZGY9|μvn߻5cWݷa^+X֥vnݘ\v7m>Fgzv"-;Ew֝}1|RjN𿊀7g#֟*GQQ|#/bo]p$>_Un9гUbn9׃ErQBU-^vDmVh'<R[fdHT]*~}3j;nvjc7s-rӳ Y8[n[1pJx kX[Jk9Mn!_Nю6x:iZ˦U |߉^Ԛ݃hYxk &U^bwKk.[jE+P(˞=9j@snCv7%c_7=xǁ<l {t'酚+1F‹l׭:ݻILruǶkL-L(K0L1&>wXB(pm;1fpnlp֓%Skidkt(U +xulo'/ڕeN r=^pZZ:Pnj8Hf"48ijY[ N[yZٻ+=  ø:3 ?^ܷ^Sr#YK[UF?CuhC b]GM')mڏsNrܗI]ljq6VB. W,UK"YX5{c >Iqā> T:n!,5l2VzCl|+I[*SrjnS6٨y+x,@>П.g+!rn9>N|W>OZT_ut Y""v7|sfި;Pclm EùN,{'fNT%U&LfH8~1v>Il}统u6P˗c(WV~H^bMU.o*oOF0N:_:6Smr_.b+|ݶYY غF,mwjv>f*>QM뭱Sd:`N{l/⎱;n-z~"Gze퇎J5S KG9!Gn;N1 ݎ h6m|S?ɂ5'WOÞ 7|7^ao @mxGmi^jϽ>01Mf0լD3-2T. VXR"ɥV Kl J O7|u?bvа;6.eߓ|[1bmRr,eRz`z 6܎-ͨku͹Fː dPhYgZUj}nvX;z=gVեTv_J }\1n7w2J?ޘγc\E 1Aޑzq;\r]]\Y&[nsNei\uURje*Qk2CSl*xJz-xٶlm+|UjUؓ`Ladqiĩ!Gd\W~fz;Tn*PdRM&T4`չSWq5k훶(N"Ӎ% V]֦wb.nUO!u*J&Oӕ2e|Z=eV쫚΅g#+/RW:طnbi*Wyo)p{:ETKؚR(RY+r웓r(IF) VmȵNB:h Q1ғ|u8E]{,'$-TR[j49l*3"I鯴zhd>Q+\BkNF=.$ZR4Nwհ(IpNi.(Gi33#33e$FXK*NdWrud[r{xnk$v2ıh+J1TQ[#JQl[tRO]LHKٮ NӍnF񨔤֞Em'MILB"ԋ%dBŋ+p̿_17jzT~4pc Vo\ƹb9Rq-'1j;8ܗ)hE%DZKS<璸Bu*%*Yw5ڻ9ۣ^z4U; Ñk\U(o~G?VUĎ:?P?_F_Kߤ~ᓾI |pr.Ok\SklRhҪz{­P .}SktZ7UQ4ڌIM8̈eaӊJZ%FFZu,KZvln廐SNFIVtuNi?CM5]+Ph,{jN JSR$IS^tSUVrORYu.9WyP6 [Kiu m!X|]Y79ӄ)\ģ)pbڳr%*&ꑶ_-H*dzk)1 V3')UAϹٶWRxe'պn۫h7AR9 EAJeGLms!%D| A 5]/Q3eb̄vnVn%za\m kZnv([emqrIҕij|""><hjJשvvǕ|Pޟs}V~2&Z?+2N&Z4w@)4iSڪ_>/JN9Hiۏuf8'It[ȲR.hZ$ȋ_Y ~U<UUO*6b)Ovzڜj\R̋.$FsQuҊj^נ䈈y<zZIuP[}Qm=C?zN(Exqu/kn S-FzKZzOסӽjJ\)F3b!r5ٝ|;6 o=-3*λ]αb\abqRi-w޵⦪~b8Kpo)Z=>)ғ"5/GTZLE-輵f7ݘ۹~+&+w/7GFI:l33fg.N~۲\2|*cnermnnM+Fq"ѪIz%j =YW8@~gc/~?N'?)«qȸs➟n=k" X“m֮VreMh2[uݖ] *FܖN)MȐ`f0 g,C9̑o;ddudJ=In13:ݒvvdMUEJLp^,6t-@͐9'{7m{-3,>hnF;ѰM)->>+Ěz!R* :`e--m7nB\u{b U>[8֪]6^ߤLʦ\DFNo$$dͶlgno8OrsQ\l̯hRo8tuNo+ CTxu!2[>ctFpeޓƻֶR"3QrQuOѳgwQr;S~)6HhZw/GgVTmUf_yt7%$];zLWF̰xy2Ʉu!MCmš_0[W6jf#a-KLi+3Q7c^qg%s<1aYIQeZf+}>;S6L0]Yu_h9߻<ƅpmiM$AVvŚ,*#t2.8Y)-Zhshü97/#Oro"u^/uFgWɺ,p:6a,^x%$Yve^3PƗMnTP&yS}OJ '덫MH^:rXԴJۋ/rI;S*,+yz1hv)Qw^ڍJ2oL׊q(\fDj:^T%vOadɂnS}ZO)N*λdaȜkG_PIEO}нa(^iQX᯦-7^)%g'SJx(.S9zVɴZ{E ))ۅi/s7 VIV-|sj0*UBTHIqRf>FP$KqN0 R̻8j\GcC}IUz\i 6F)Q{Gҧ3qSzKj-Az VЛS-zy:8*mNk|D鿓ND2u+0Yŝ7kqm·?8Ib]u>˗^_>(]vӋzv+ݩ){vZrJ2RQ몋C$z [,pp,8mڊbR]Il .f~d/ݓs㓓mͶ{mgjQwn=Oic9ܚm4Q/6ݨ[TƧ?nԶoytf{@AzT{e{[O'ZRZt~AGD?s3􌿂ՉIw'|~U\ w~di:Kޱ)U/sU%njѩ&GSP^ǝd)..!^U` 1wX[aԇSxoFV6_扐)T 2Mfd=ۖͭiZ7KK Bi9%7@<3<ճԻU,},a}FRqɛr i@ONJvK KLN M, ʖv0n-]DwlI-X6ܶ$Jʴh5O+mOI+Ra瞠\ MG7BفjYo1#͖0V`Ѱ2M?c8>-Crt*JkIGS:e#hPKx[鱼>{5m;wcն&>j-M֥^َ) 6yȜl_w{-ō̱r> U=]iw3)r*]:K]6BdCTZ|>gf}LW}[$'Y5 &c -j.z6R 67MԷFMnÌwI7w5E}o޽+K ֵy4܌ȥW"COyR[q5Ӱ͙f[v"_#q{MV6܍3"u9BK(41ӯqˇc${ߝCi6I(OmθzҜ5k^:>Jzw.>qV8{vU[ڶEm|DžBz].KHjI]x;Mɗ{m,qZXr忇2u^RO2Z}ZێS[2Jen!*NDcrBUً4<ǼMҲs1Zw57c3&ĖڻzmP*FuJG1-dN:|OU}ҵgi2t~F^^Z.VxjvŧnNNh<:]^~NN+ge^g.SԔGFe߯'[vn'(ScJ]kܗ7eJOlRrfziݮq̋S"\*U<*W]k$FջV}? 7g#֟*GQQ|#/bo]p$>_Un9;l S VvQU%OLU{οmU6bZ1MTx%!֙Q7, J=!3 ;Q,ڌ;6ͱ݅q^&ߔ·n #WbwӖX.HtG)N&d̵zpI,n cu ޖUj+VXUp[w]N o.J6Z8Ts&utxln;~HPHS/xw`G\ʡ¿rj Z^vt"[L:SD\h0sUwR,}[x^X,R2Vn< ]2YDr[SRKs8tXb̷G?Ps Tv 3be,zVz D[/I.KOEQrm'$7|[J>r S`5յwT#\w1FTz\Ԛ &"ׅhSHrD\'r]~/>p;:Piuu:"9ő=tTaS7V2rӷk7mb[^WmPp*[y.Þ6f]cizJCgRR@UVl큝.WJP1N{/\whZ ػϧӱE7|E֫Sί.x-Y&pi%v''-x6r'Ws*6=DwwUu]=C?MK [yrtܒG$!WGqJ*%SAz ED[^)/tė/g=#Omd.|^n/sl׉g DZqemqowݮRzUܜ=ڽ-o/Iۖ;qVʘgPp|mm;6zGl9.8pwWgsJ2qPbe}}UpNjٯ}7TMQKrؽtEx%v w߾8%|j;~|}pK]ơ/ w߾8%|j;~|}pK]ơ/ w&~e_H 8PL7:%ʭ5Kw&U2vwR_+rm'}C7#rWoO&HoG?M$UR7{FU]u ;# !Wk`|W>׹潇9Vn)6)*ҹ{%qV4q>W1vi#T"Qk&GwxcJBJ- Ϸ^ˁxkU}ԣ/3.;]J=<*)cS)ROK9H=,r zX @)cS)Da^ԽQ gxJI=w֣gf*TRj

• Received: March 19, 2018   • Accepted: September 28, 2018

© The Author(s). 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

  • 2,104 Views
  • 5 Download
  • 10 Web of Science
  • 10 Crossref
  • 9 Scopus
prev next
  • Background
    Compared to 10 years ago, the ambient particulate matter 10 (PM10) and carbon monoxide (CO) levels in South Korea have decreased. However, compared to many other OECD countries, these levels are still too high. Concentration of air pollutants such as PM10 is especially higher during winter than during summer. The first step to rationally solving the air pollution problem in Korea is to identify the key air pollution sources during each season. This ecological study was performed to assess the association between the number of days the accepted PM10 and CO thresholds were exceeded and the concentration of potential emission sources in winter season 2015.
  • Methods
    An emission inventory of the PM10 and CO emissions in the 232 administrative South Korean districts in January, 2015, and February, 2015 and December, 2015, and the population density, number of car registrations, number of car accidents, industrial power usage, and presence of a fossil-fuel power plant in each district was established on the basis of official web-page data from the government. For all emission source variables except power plants, the administrative districts were grouped into quartiles. Districts were also divided according to whether a power plant was present or not. Negative binomial regression was performed to assess the associations between the PM10 and CO air pollution (defined as ≥100 g/m3 and ≥ 9 ppm, respectively) and the concentration of each emission source.
  • Results
    Compared to the districts with the lowest population density, the districts with the third highest population density associated most strongly with air pollution. This was also observed for industrial power usage. Car accident number and car registration numbers showed a linear relationship with air pollution. Districts with power plants were significantly more likely to have air pollution than districts that lacked a plant.
  • Conclusions
    Greater car numbers, industrial activity, and population density, and the presence of fossil-fuel plants associated with air pollution in the 2015 winter in South Korea. These data highlight the contaminant sources that could be targeted by interventions that aim to reduce air pollution, decrease the incidence of exposure, and limit the impact of pollution on human health.
  • Electronic supplementary material
    The online version of this article (10.1186/s40557-018-0273-5) contains supplementary material, which is available to authorized users.
Environmental white papers published in 2017 by the Ministry of Environment of South Korea state that while the atmospheric concentrations of nitrogen oxide (NO2) and ozone (O3) have not changed in the past 10 years, the levels of sulfur oxides (SO2) and particulate matter 10 (PM10) have dropped. In particular, the PM10 concentration has decreased markedly. However, it is still relatively high compared to the levels in many of the other OECD countries [1]. This is significant because many recent studies show that high particulate matter concentrations are a major public health issue [211]. These findings have intensified efforts to identify the sources of particulate matter in South Korea and other countries.
Particulate matter can be divided into two types: one is emitted by directly from a source while the other is the result of a chemical reaction. The primary particulate matter is mainly emitted by diesel cars and factory chimneys while the secondary particulate matter is the result of chemical reactions with the SO2 and NO2 that is emitted by automobiles or plants [12]. Several studies in Germany, South Korea, India, and China show that PM10 is mostly due to secondary sulfate reactions, secondary nitrogen reactions, and diesel and gasoline cars. Other common sources are construction, road dust, soil, other combustion reactions, incineration, and industry-related activity [1316].
According to a recent report on seasonal variation of air pollution level in Poland, the concentrations of PM10, carbon monoxide (CO), NO2, and SO2 rise in winter because of the increase in heat consumption. In particular, the PM10 concentrations are highest in winter, followed by autumn, spring, and summer. O3 concentrations tend to increase during the summer because of increased frequencies of the photochemical reaction [17]. A study on the long-term trends of particulate matter in the air in a Seoul urban area from 2004 to 2013 showed that the average concentration of PM2.5 was highest in the winter, while PM10 was also higher in winter than during summer. Both PM10 and PM2.5 had the lowest concentration during summer [18]. This seasonal variation and increased PM in winter might be attributed to strong fuel consumption and temperature inversion associated with the winter season [19, 20]. The PM10 levels correlate with various air pollution sources such as industrial activities, on road, and off road. However, a detailed association between air pollution sources and PM10 as well as the nationwide results were not shown.
The first step to solve the air pollution problem in Korea is to identify the key sources of pollutants. The purpose of this ecological study was to estimate the association between the number of days the PM10 and CO levels exceeded the exposure limits in the winter of 2015 and the concentration of several potential pollution sources.
Generation of an emission inventory for South Korea in the winter of 2015
South Korea has 232 administrative districts that are termed Si-goon-gu. The total air pollutants that were emitted in each Si-goon-gu from several potential pollutant sources in the 2015 winter (January, 2015, February, 2015 and December, 2015) were estimated, as follows.

Population density

The population density per unit area (persons/km2) in each Si-goon-gu in December 2015 was calculated on the basis of data provided by the Ministry of Land, Infrastructure, and Transport [21] [22]. To assess the association between population density and air pollution, the 232 Si-goon-gu were divided into quartile groups on the basis of the population densities: in first quartile (Q1), secondary quartile (Q2), third quartile (Q3), and fourth quartile (Q4), the population density was < 98.27, 98.27–459.19, 459.19–6329.12, and ≥ 6329.12 persons/km2, respectively.

Number of car registrations

The total number of registered motor vehicles in 2015 in each administrative district was obtained from the Ministry of Land, Infrastructure, and Transport [23]. Since commercial trucks may not actually be located in the area of registration, we excluded vans, trucks, and other car types that are likely to have variable locations; only the car registration data were used. The data were expressed as number of car registrations/1000. The 232 Si-goon-gu were divided into quartile groups on the basis of the car registrations/1000: in Q1, Q2, Q3, and Q4, the number of car registrations/1000 was < 16.43, 16.43–48.90, 48.90–98.36, and ≥ 98.36, respectively.

Number of car accidents

Park found that the number of automobile accidents increases in proportion to the traffic density [24]. Therefore, the number of car accidents is a valuable surrogate marker of mobile sources of air pollution. The number of car accidents in the winter of 2015 was obtained from the Road Traffic Authority [25]. The number of car accidents in each administrative district was expressed simply as counts (i.e., not in relation to unit area). The 232 Si-goon-gu were divided into quartile groups on the basis of the car accident counts: in Q1, Q2, Q3, and Q4, the number of car accidents were < 213, 213–728, 729–1520, and ≥ 1521, respectively.

Industrial power usage

The Korea Electric Power Corporation (KEPCO) is the exclusive provider of electricity power to the nation [26]. Data from the KEPCO were used to estimate the industrial power usage in each district. The data from each administrative district were expressed as kilowatt-hour (kwh)/km2. The 232 Si-goon-gu were divided into quartile groups on the basis of their industrial power usage: in Q1, Q2, Q3, and Q4, the industrial power usage was < 300,926.7, 300,926.7–1,588,265.6, 300,926.7–8,306,667.3, and ≥ 8,306,667.4 kwh/km2, respectively.

Generation of electricity

The amount of power that was generated from fossil fuels was estimated on the basis of detailed statistics on the power plants from the KEPCO and nationwide statistics reported by the Korean government on the “public data portal” web-page (http://epsis.kpx.or.kr/epsisnew/selectEkfaFclDtlChart.do?menuId=020104) [27]. The KEPCO also provided, on request, data on how much electricity was generated by each power plant. These data were used to determine how much power (kwh) was used in the 2015 winter and the location of each plant. Since only 90 out of 232 administrative districts had a power plant, the generation of electricity was expressed as a dichotomous variable (Yes/No).
Assessment of CO and PM10 pollution exposure in each Si-goon-gu in the 2015 winter
The National Institute of Environmental Research (NIER) measures the amount of air pollution per hour at 320 monitoring stations across the nation. The NIER CO and PM10 data from the winter of 2015 were extracted [28]. The data from the 38 monitoring stations that were located next to roads with heavy traffic (i.e., the road network monitoring stations) were excluded as these data are outliers. According to the address of each monitoring station, the remaining 282 monitoring stations were distributed variably across the 232 Si-goon-gu: 44 Si-goon-gu did not have monitoring stations and in some cases one Si-goon-gu had multiple monitoring stations. If there were multiple monitoring stations in a Si-goon-gu, the maximum moving average values were taken and the rest were deleted. To control for the impact of pollution from China, the data from the days when yellow dust was observed were excluded. The CO data in the dataset were expressed as the moving average of 8 hours while the PM10 data were expressed as the moving average of 24 h. Korean law stipulates that beyond the respective CO and PM10 thresholds of 9 ppm and 100 g/m3, the air quality is considered to be poor [29]. 73 Si-goon-gu were excluded in analysis because there are no monitoring station or missing value. Each Si-goon-gu has a number of days exceed PM10 and CO criteria. It assumed that the higher the number of days of baseline excess, the more severe the air pollution.
Statistical analyses
Each item of the emission inventory, excluding the generation of electricity, was expressed as quartiles. Binomial negative analysis was performed to determine the dose-response relationship between the number of days in winter where the PM10 and CO levels were excessive and the population density, the number of car registrations/1000, the number of car accidents, the kwh of industrial power usage/km2, and whether electricity was generated locally or not. SAS software (version 9.4, SAS Institute Inc., Cary, NC, USA) was used for database management and the statistical analyses. Statistical significance was defined as p < .05.
Table 1 summarizes the descriptive statistics of each emission source. Statistics on each emission source and average number of winter days with excessive CO and PM10 levels by Si-Do scales are shown in Additional file 1 and in Additional file 2, respectively. Table 2 shows the average number of winter days with excessive CO and PM10 levels in the Si-goon-gu with low (Q1), moderate (Q2), high (Q3), and very high (Q4) population densities, numbers of car registrations, number of car accidents, and industrial power usage/km2. The average number of days the CO and PM10 levels exceeded the thresholds in the 90 and 142 Si-goon-gu that, respectively, did and did not generate electricity from fossil fuel power plants is also shown in Table 2.
Table 1
Descriptive statistics of the emission inventories of South Korea in the winter of 2015
Mean SD Minimum (Min.) Maximum (Max.) Cut of level for quartiles
1st quartile 2nd quartile 3rd quartile
Population density (persons/km2) 4123 6431 20 27,938 98.27 459.19 6329.12
Number (No.) of car registrations (1000 cars) 72 74 4 232 16.43 48.90 98.36
No. of car accidents 1064 1078 2 5368 213.00 729.00 1521.00
Industrial power usage (Kwh/km2) 6,375,526 12,198,986 41,955 129,655,373 300,926.80 1,588,265.70 8,306,667.40
Generation of electricity (Kwh) 1000,841,589 2,274,966,981 93 10,673,238,998 1,309,273.00 52,356,385.00 820,165,148.00
Table 2
Number of days the particulate matter 10 (PM10) and carbon monoxide (CO) levels in the winter of 2015 exceeded government thresholds
CO (days) PM10 (days)
Mean ± SD Min. Max. Mean ± SD Min. Max.
Population density (persons/km2)a
 Q1 (lowest) 8.3 ± 14.3 0 54 1.4 ± 1.2 0 4
 Q2 28.4 ± 24.4 1 81 4.1 ± 4.7 0 23
 Q3 41.8 ± 19.0 0 79 5.4 ± 5.3 0 21
 Q4 (highest) 30.5 ± 21.1 0 66 2.2 ± 2.9 0 12
No. of car registrationsb
 Q1 (lowest) 7.5 ± 13.9 0 54 2.0 ± 2.6 0 10
 Q2 26.5 ± 24.1 0 77 3.0 ± 3.7 0 16
 Q3 29.0 ± 19.3 0 72 2.9 ± 4.0 0 23
 Q4 (highest) 43.2 ± 20.0 0 81 5.0 ± 5.2 0 21
No. of car accidentc
 Q1 (lowest) 9.9 ± 14.6 0 54 2.1 ± 2.6 0 10
 Q2 21.9 ± 23.0 0 77 2.1 ± 2.6 0 12
 Q3 31.2 ± 19.6 0 72 3.6 ± 4.4 0 23
 Q4 (highest) 43.0 ± 20.4 0 81 4.8 ± 5.2 0 21
Industrial power usage (Kwh/km2)d
 Q1 (lowest) 9.8 ± 13.8 0 46 1.6 ± 1.5 0 4
 Q2 28.2 ± 26.5 0 81 4.2 ± 4.9 0 23
 Q3 38.4 ± 18.6 1 78 5.0 ± 5.1 0 21
 Q4 (highest) 33.8 ± 22.2 0 79 2.6 ± 3.7 0 16
Generation of electricity (Kwh)
 No 27.0 ± 22.8 0 77 2.3 ± 2.8 0 14
 Yes 37.1 ± 21.2 0 81 5.1 ± 5.4 0 23
apopulation density(persons/km2): Q1 < 98.87, 98.87 ≤ Q2 < 459.19, 459.19 ≤ Q3 < 6329.12, 6329.12 ≤ Q4
bNo. of car registrations(1000 cars): Q1 < 16.43, 16.43 ≤ Q2 < 48.90, 48.90 ≤ Q3 < 98.36, 98.36 ≤ Q4
cNo. of car accident: Q1 < 213.00, 213.00 ≤ Q2 < 729.00, 729.00 ≤ Q3 < 1521.00, 1521.00 ≤ Q4
dIndustrial power usage (Kwh/km2): Q1 < 300,926.80, 300,926.80 ≤ Q2 < 1,588,265.70, 1,588,265.70 ≤ Q3 < 8,306,667.40, 8,306,667.40 ≤ Q4
The number of days of excessive CO and PM10 increased steadily as the population density, and the industrial power usage/km2 increased. However, the peak number of days were observed in the 3Q, not 4Q. The number of days of excessive CO and PM10 increased steadily as the number of car accidents and the number of car registrations increased: the peak number of days were observed in the 4Q. The Si-goon-gu that did have power plants had more days of excessive CO and PM10 than the Si-goon-gu that did not.
Table 3 shows the results of the negative binomial regression analyses. Compared to the lowest population density (Q1), all three higher population densities associated significantly with higher CO and PM10 pollution. The association for both pollutants grew increasingly stronger as the population density rose from Q2 to Q3; thereafter (Q4), the association dropped somewhat. The same was observed for the industrial power usage: The numbers marked with an asterisk did not associate significantly with PM10 pollution compared to Q1. All of these findings are consistent with the trends shown in Table 2.
Table 3
Association between the number of days of excessive particulate matter 10 (PM10) and carbon monoxide (CO) in the winter of 2015 and concentration of putative contaminant sources
CO PM10
exp(β) 95% CI exp(β) 95% CI
Population density (person/km2)a
Q1(lowest) 1.00 1.00
Q2 3.44 1.96–6.04 3.00 1.46–6.17
Q3 5.07 3.00–8.58 3.89 1.97–7.68
Q4(highest) 3.70 2.19–6.26 1.59* 0.79–3.18
No. of car registrationsb
Q1(lowest) 1.00 1.00
Q2 3.53 1.96–6.38 1.50 0.70–3.21
Q3 3.86 2.22–6.72 1.45* 0.71–2.95
Q4(highest) 5.75 3.32–9.99 2.49 1.23–5.04
No. of car accidentc
Q1(lowest) 1.00 1.00
Q2 2.20 1.23–3.93 1.00 0.47–2.13
Q3 3.14 1.84–5.36 1.67* 0.84–3.32
Q4(highest) 4.33 2.54–7.38 2.23 1.13–4.40
Industrial power usage (Kwh/ km2)d
Q1(lowest) 1.00 1.00
Q2 2.88 1.64–5.07 2.69 1.31–5.52
Q3 3.93 2.37–6.51 3.19 1.66–6.12
Q4(highest) 3.46 2.09–5.71 1.70* 0.88–3.27
Generation of electricity (Kwh)
No 1.00 1.00
Yes 1.37 1.01–1.86 2.27 1.60–3.21
apopulation density(persons/km2): Q1 < 98.87, 98.87 ≤ Q2 < 459.19, 459.19 ≤ Q3 < 6329.12, 6329.12 ≤ Q4
bNo. of car registrations(car/1000): Q1 < 16.43, 16.43 ≤ Q2 < 48.90, 48.90 ≤ Q3 < 98.36, 98.36 ≤ Q4
cNo. of car accident: Q1 < 213.00, 213.00 ≤ Q2 < 729.00, 729.00 ≤ Q3 < 1521.00, 1521.00 ≤ Q4
dIndustrial power usage (Kwh/km2): Q1 < 300,926.80, 300,926.80 ≤ Q2 < 1,588,265.70, 1,588,265.70 ≤ Q3 < 8,306,667.40, 8,306,667.40 ≤ Q4
Compared to the lowest car accident counts (Q1), higher car accident counts associated significantly with higher CO and PM10 pollution (the only exception was the association between PM10 pollution and the Q3 car accident counts, which did not achieve statistical significance). There was a linear relationship between pollution and car mobile pollutants since the association steadily strengthened as the car accident counts and number of car registration rose. These findings are consistent with the trends shown in Table 2.
The Si-goon-gu that had power plants were significantly more likely to exceed both air pollution thresholds than the Si-goon-gu that lacked power plants.
Particulate matter and air pollution continue to be a problem during winter. There is a growing need to establish the cause in order to come up with countermeasures. The purpose of this study was also to identify the relationship between different variables, using official measurement data and other data provided by the country.
A key finding of this study was that there was a linear relationship between increasing mobile pollutant counts and increasing number of days of excessive CO and PM10 levels in Korea during the winter season of 2015. This is consistent with the fact that car emissions are a classic source of air pollutants such as CO, NOx, SOx, and PM10. Indeed, a South Korean government report [1] showed that in 2013, car exhaust was responsible for 58.7% of all CO emissions and 10% of all PM10 emissions.
The present study found a consistent linear relationship between the number of car registrations and the days of excessive air pollution with CO and PM10: while the association did increase up to the 3Q, the association weakened in the 4Q. This is not consistent with a previous report that showed that air pollutant levels correlated significantly with several car-related statistics (major-road density, all-traffic density, and heavy-traffic density) [30]. Data from monitoring station where located roadside were excluded because the roadside’s outcome couldn’t represent all the area. Thus, our outcomes might underestimated the effect of motor vehicles.
We observed that the population density also showed a linear dose–response with air pollution until the 3Q: the highest population density associated less strongly with pollution than the smaller population densities. This is not consistent with a report from the United States of America that found a significant positive correlation between population density and air pollution [31]. However, the study conducted in the U.S only include major metropolitan areas where their population over one-million. Moreover, air pollution from population activities is not easy to explain. The results of each correlation analysis on population density and the number of car registration, number of car accidents, and industrial power usage were r = 0.31, 0.41 and 0.63 respectively. (Not presented as a separate table) Population density showed a weak correlation with mobile pollutants and a rather strong correlation with industrial power usage. Population density exhibited the same pattern as the negative regression analysis of industrial power usage. In other words, the 3Q group showed the greatest degree of contamination while the 4Q group showed a slight decrease in pollution. This suggests that while larger population translates to more industrial power usage, the content of industrial activity is deeply related to air pollution.
When we used industrial power usage as a measure of industrial activity, we found the same relationship with air pollution as population density: there was a linear dose–response relationship between industrial power usage and air pollution until the 3Q: the highest levels of industrial power usage associated less strongly with pollution than the 3rd levels of industrial power usage. We speculated that this may reflect differences in the specific type of industries that used industrial power. To address this, we assessed the types of industries in the Si-goon-gu that were in the 3Q and 4Q. Indeed, the industries in the 4Q were mainly service and healthcare businesses, which are unlikely to be air polluters. By contrast, the main industries in the 3Q manufactured electronic video and audio equipment, chemical products, and motor vehicles. Additional file 3 and Additional file 4 show the key industries in the third and 4Q of industrial power usage and how much industrial electricity they used in 2015 winter. Data from the KEPCO on the electricity usage by various industries in January, 2016, were used to compile this table [32].
Thus, the 3Q, but not 4Q of population density, and industrial power usage associated most strongly with air pollution. An analysis of the third and fourth Si-goon-gu showed that industrial electricity consumption was most concentrated in the downtown areas of Seoul and Busan, followed by the periphery of these metropolitan areas (Additional file 5). Additional file 6 showed that distribution of the Korea industrial complexes in 2015. Approximately 40% of the 3Q of industrial electricity consumption were concentrated in industrial complexes. These findings partially support the notion that PM10 and CO may be more affected by industrial complex activities than by population density.
Since there are relatively few fossil fuel power plants around the country, the Si-goon-gu with and without these plants were compared. The districts with these plants were significantly more likely to have air pollution than the districts that did not. This is consistent with a previous study [33].
The present study has several limitations. Since it had an ecological design, it was not possible to demonstrate a cause and effect relationship between the putative contaminant sources and air pollution. Moreover, all data used in the study were secondary data from the South Korean government. Third, while monitoring stations have been established all over the country to monitor air pollution levels, the stations are concentrated in metropolitan areas and around large cities. This shortcoming is difficult to overcome. While many studies use simulated pollution data, these data are merely estimates, and the purpose of this study was to examine the relationship between real air pollution data and putative sources. Another limitation is that due to substantial difficulties in estimating how much contaminants are produced by putative sources, we used surrogate variables to represent these sources. This limitation is partly overcome by the fact that we measured the population density, automobile density, and industrial activities in each district. Air pollution levels in a given country can be significantly affected by pollutants from surrounding countries. In South Korea, the air is often affected by pollution from China. However, we did not correct the measured air pollution levels for the direction of air flow, although we did exclude the data from the days when yellow dust was observed (19 days). Despite these efforts, external factors were not sufficiently excluded. Meanwhile, CO is a gaseous substance, so it is understood that the exposure in neighboring areas is a more appropriate material for explanation. Analyzing between pollutant and CO, not necessary to consider the effect from China. Finally, humidity, temperature and wind direction all influence air pollution, and the non-correction of these factors pose limitations in this study.
The present study showed the impact of major airborne sources on air pollution in South Korea in winter. Significantly, our study design allowed us to investigate whether all but one of the putative sources showed a positive dose–relationship with CO and PM10 pollution: all did. The remaining variable, power generation, which was expressed as a dichotomous variable, also associated with air pollution. In addition, we examined the contribution of motor vehicles to air pollution by not only assessing vehicle registration data but also the number of car accidents. In addition, we analyzed the effect of the type of industry in specific areas to explain why the third, not the fourth, highest industrial power usage associated most strongly with air pollution. Finally, the results are likely to be a good representation of the real situation because all data were from various parts of the government: this assures public confidence in the data.
Air pollution is increasingly being seen as an important public health issue. To reduce air pollution, the incidence of exposure, and the impact on human health, it is important to identify the most significant sources of pollutants. This study showed that cars, industrial activity, fossil fuel plants, and population density associated significantly with CO and PM10 air pollution in South Korea in winter. It also showed that polluting industrial activity occurs on the periphery of large cities. Well-designed research studies that verify these findings are warranted.
The Authors wishes to acknowledge the financial support of the Catholic Medical Center Research Foundation made in the program year of 2017.
Availability of data and materials
The datasets generated and analyzed during the current study are available in the references.
  • 1. Ministry of Environment. 2017 white paper of environment. 2017, Sejongsi: Ministry of Environment.
  • 2. Cai Y, Hansell AL, Blangiardo M, Burton PR; BioShaRe, de Hoogh K, et al. Long-term exposure to road traffic noise, ambient air pollution, and cardiovascular risk factors in the HUNT and lifelines cohorts. Eur Heart J 2017;38:2290–2296. 10.1093/eurheartj/ehx263. 28575405.ArticlePubMedPMC
  • 3. Cascio WE. Proposed pathophysiologic framework to explain some excess cardiovascular death associated with ambient air particle pollution: insights for public health translation. Biochim Biophys Acta 2016;1860:2869–2879. 10.1016/j.bbagen.2016.07.016. 27451957.ArticlePubMed
  • 4. DeFranco E, Moravec W, Xu F, Hall E, Hossain M, Haynes EN, et al. Exposure to airborne particulate matter during pregnancy is associated with preterm birth: a population-based cohort study. Environ Health 2016;15:6. 10.1186/s12940-016-0094-3. 26768419.ArticlePubMedPMCPDF
  • 5. Furuyama A, Kanno S, Kobayashi T, Hirano S. Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes. Arch Toxicol 2009;83:429–437. 10.1007/s00204-008-0371-1. 18953527.ArticlePubMedPDF
  • 6. Gauderman WJ, Urman R, Avol E, Berhane K, McConnell R, Rappaport E, et al. Association of improved air quality with lung development in children. N Engl J Med 2015;372:905–913. 10.1056/NEJMoa1414123. 25738666.ArticlePubMedPMC
  • 7. Goldberg MS, Labreche F, Weichenthal S, Lavigne E, Valois MF, Hatzopoulou M, et al. The association between the incidence of postmenopausal breast cancer and concentrations at street-level of nitrogen dioxide and ultrafine particles. Environ Res 2017;158:7–15. 10.1016/j.envres.2017.05.038. 28595043.ArticlePubMed
  • 8. Int Panis L, Provost EB, Cox B, Louwies T, Laeremans M, Standaert A, et al. Short-term air pollution exposure decreases lung function: a repeated measures study in healthy adults. Environ Health 2017;16:60. 10.1186/s12940-017-0271-z. 28615020.PubMedPMC
  • 9. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004;16:437–445. 10.1080/08958370490439597. 15204759.ArticlePubMed
  • 10. Raaschou-Nielsen O, Pedersen M, Stafoggia M, Weinmayr G, Andersen ZJ, Galassi C, et al. Outdoor air pollution and risk for kidney parenchyma cancer in 14 European cohorts. Int J Cancer 2017;140:1528–1537. 10.1002/ijc.30587. 28006861.ArticlePubMedPDF
  • 11. Talbott EO, Arena VC, Rager JR, Clougherty JE, Michanowicz DR, Sharma RK, et al. Fine particulate matter and the risk of autism spectrum disorder. Environ Res 2015;140:414–420. 10.1016/j.envres.2015.04.021. 25957837.ArticlePubMed
  • 12. National Institute of Environment Research. KORUS-AQ rapid science synthesis report. 2017, Incheon: National Institute of Environmental Research.
  • 13. Ehrlich C, Noll G, Kalkoff W, Baumbach G, Dreiseidler A. PM10, PM2.5 and PM1.0—emissions from industrial plants—results from measurement programmes in Germany. Atmos Environ 2007;41:6236–6254. 10.1016/j.atmosenv.2007.03.059.
  • 14. Li KC, Hwang I. Characteristics of PM2.5 in Gyeongsan using statistical analysis. J Korean Soc Atmos Environ 2015;31:520–529. 10.5572/KOSAE.2015.31.6.520.
  • 15. Srimuruganandam B, Shiva Nagendra SM. Source characterization of PM10 and PM2.5 mass using a chemical mass balance model at urban roadside. Sci Total Environ 2012;433:8–19. 10.1016/j.scitotenv.2012.05.082. 22766423.ArticlePubMed
  • 16. Wu D, Wang Z, Chen J, Kong S, Fu X, Deng H, et al. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at a coal-based industrial city: implication for PAH control at industrial agglomeration regions, China. Atmos Res 2014;149:217–229. 10.1016/j.atmosres.2014.06.012.Article
  • 17. Cichowicz R, Wielgosinski G, Fetter W. Dispersion of atmospheric air pollution in summer and winter season. Environ Monit Assess 2017;189:605. 10.1007/s10661-017-6319-2. 29103077.ArticlePubMedPMCPDF
  • 18. Ahmed E, Kim KH, Shon ZH, Song SK. Long-term trend of airborne particulate matter in Seoul, Korea from 2004 to 2013. Atmos Environ 2015;101:125–133. 10.1016/j.atmosenv.2014.11.024.Article
  • 19. Kim H, Zhang Q, Bae G-N, Kim JY, Lee SB. Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using a high-resolution aerosol mass spectrometer. Atmos Chem Phys 2017;17:2009–2033. 10.5194/acp-17-2009-2017.Article
  • 20. Kim HS, Huh JB, Hopke PK, Holsen TM, Yi SM. Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmos Environ 2007;41:6762–6770. 10.1016/j.atmosenv.2007.04.060.Article
  • 21. http://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1IN1509&conn_path=I2.
  • 22. http://kosis.kr/statHtml/statHtml.do?orgId=116&tblId=DT_MLTM_2300&conn_path=I2.
  • 23. http://stat.molit.go.kr/portal/cate/statFileView.do?hRsId=58&hFormId=1244&hSelectId=1244&hPoint=00&hAppr=1&hDivEng=&oFileName=&rFileName=&midpath=&month_yn=N&sFormId=1244&sStart=2017&sEnd=2017&sStyleNum=562&sDivEng=N&EXPORT.
  • 24. Park B. Predicting the traffic accident and volume using simultaneous equations. J Institute Constr Technology 2014;33(1):1–6.
  • 25. http://taas.koroad.or.kr/sta/acs/exs/typical.do?menuId=WEB_KMP_STA_UAS_UDS.
  • 26. http://home.kepco.co.kr/kepco/KO/ntcob/ntcobView.do?pageIndex=1&boardSeq=21015198&boardCd=BRD_000283&menuCd=FN05030105&parnScrpSeq=0&searchCondition=total&searchKeyword.
  • 27. http://www.data.go.kr.
  • 28. https://www.airkorea.or.kr/last_amb_hour_data.
  • 29. http://www.law.go.kr/LSW/lsBylInfoPLinkR.do?lsiSeq=193560&lsNm=%ED%99%98%EA%B2%BD%EC%A0%95%EC%B1%85%EA%B8%B0%EB%B3%B8%EB%B2%95+%EC%8B%9C%ED%96%89%EB%A0%B9&bylNo=0000&bylBrNo=.
  • 30. Liu SV, Chen FL, Xue J. Evaluation of traffic density parameters as an Indicator of vehicle emission-related near-road air pollution: a case study with NEXUS measurement data on black carbon. Int J Environ Res Public Health 2017;14:12.ArticlePubMedPMC
  • 31. Environmental Proctctions Agency. Population density traffic density and nox emission air pollution density in major metropolitan areas of the United States. 2010.
  • 32. https://www.data.go.kr/dataset/3069444/fileData.do.
  • 33.
  • 34. http://www.kicox.or.kr/user/bbs/BD_selectBbs.do?q_bbsCode=1036&q_bbscttSn=373&q_order=&q_clCode=2.

Figure & Data

REFERENCES

    Citations

    Citations to this article as recorded by  
    • Unpacking the Vertical City: Interaction Effects of Urban Forms on Temperatures Using SHAP
      Moon-Hyun Kim
      Sustainable Cities and Society.2025; : 107061.     CrossRef
    • A review of factors influencing sensitive skin: an emphasis on built environment characteristics
      Xiangfeng Chen, Jing Wen, Wenjuan Wu, Qiuzhi Peng, Xiangfen Cui, Li He
      Frontiers in Public Health.2023;[Epub]     CrossRef
    • Application of machine learning to predict hospital visits for respiratory diseases using meteorological and air pollution factors in Linyi, China
      Jing Yang, Xin Xu, Xiaotian Ma, Zhaotong Wang, Qian You, Wanyue Shan, Ying Yang, Xin Bo, Chuansheng Yin
      Environmental Science and Pollution Research.2023; 30(38): 88431.     CrossRef
    • Premature mortality attributable to NO2 exposure in cities and the role of built environment: A global analysis
      Jian Song, Yuling Wang, Qin Zhang, Wei Qin, Rubing Pan, Weizhuo Yi, Zhiwei Xu, Jian Cheng, Hong Su
      Science of The Total Environment.2023; 866: 161395.     CrossRef
    • Investigating relationship between particulate matter air concentrations and suicides using geographic information system
      Anna Gładka, Jan Blachowski, Joanna Rymaszewska, Tomasz Zatoński
      Psychology, Health & Medicine.2022; 27(10): 2238.     CrossRef
    • Using an Exposome-Wide Approach to Explore the Impact of Urban Environments on Blood Pressure among Adults in Beijing–Tianjin–Hebei and Surrounding Areas of China
      Jian Song, Peng Du, Weizhuo Yi, Jing Wei, Jianlong Fang, Rubing Pan, Feng Zhao, Yi Zhang, Zhiwei Xu, Qinghua Sun, Yingchun Liu, Chen Chen, Jian Cheng, Yifu Lu, Tiantian Li, Hong Su, Xiaoming Shi
      Environmental Science & Technology.2022; 56(12): 8395.     CrossRef
    • Perceived environmental pollution and subjective cognitive decline (SCD) or SCD-related functional difficulties among the general population
      Yeong Jun Ju, Joo Eun Lee, Soon Young Lee
      Environmental Science and Pollution Research.2021; 28(24): 31289.     CrossRef
    • Association between perceived environmental pollution and poor sleep quality: results from nationwide general population sample of 162,797 people
      Yeong Jun Ju, Joo Eun Lee, Dong-Woo Choi, Kyu-Tae Han, Soon Young Lee
      Sleep Medicine.2021; 80: 236.     CrossRef
    • Report of Particulate Matter Emissions During the 2015 Fire at Fuel Tanks in Santos, Brazil
      Daniela Oliveira da Silva, Bruna Hayashida Arôxa, Virginia Klausner, Eduardo Jorge de Brito Bastos, Alan Prestes, Alessandra Abe Pacini
      Air, Soil and Water Research.2020;[Epub]     CrossRef
    • Using Bayesian spatio-temporal model to determine the socio-economic and meteorological factors influencing ambient PM2.5 levels in 109 Chinese cities
      Jie-Qi Jin, Yue Du, Li-Jun Xu, Zhao-Yue Chen, Jin-Jian Chen, Ying Wu, Chun-Quan Ou
      Environmental Pollution.2019; 254: 113023.     CrossRef

    • Cite
      CITE
      export Copy Download
      Close
      Download Citation
      Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

      Format:
      • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
      • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
      Include:
      • Citation for the content below
      Association between air pollution in the 2015 winter in South Korea and population size, car emissions, industrial activity, and fossil-fuel power plants: an ecological study
      Ann Occup Environ Med. 2018;30:60  Published online October 5, 2018
      Close
    • XML DownloadXML Download
    Association between air pollution in the 2015 winter in South Korea and population size, car emissions, industrial activity, and fossil-fuel power plants: an ecological study
    Association between air pollution in the 2015 winter in South Korea and population size, car emissions, industrial activity, and fossil-fuel power plants: an ecological study
    MeanSDMinimum (Min.)Maximum (Max.)Cut of level for quartiles
    1st quartile2nd quartile3rd quartile
    Population density (persons/km2)412364312027,93898.27459.196329.12
    Number (No.) of car registrations (1000 cars)7274423216.4348.9098.36
    No. of car accidents1064107825368213.00729.001521.00
    Industrial power usage (Kwh/km2)6,375,52612,198,98641,955129,655,373300,926.801,588,265.708,306,667.40
    Generation of electricity (Kwh)1000,841,5892,274,966,9819310,673,238,9981,309,273.0052,356,385.00820,165,148.00
    CO (days)PM10 (days)
    Mean ± SDMin.Max.Mean ± SDMin.Max.
    Population density (persons/km2)a
     Q1 (lowest)8.3 ± 14.30541.4 ± 1.204
     Q228.4 ± 24.41814.1 ± 4.7023
     Q341.8 ± 19.00795.4 ± 5.3021
     Q4 (highest)30.5 ± 21.10662.2 ± 2.9012
    No. of car registrationsb
     Q1 (lowest)7.5 ± 13.90542.0 ± 2.6010
     Q226.5 ± 24.10773.0 ± 3.7016
     Q329.0 ± 19.30722.9 ± 4.0023
     Q4 (highest)43.2 ± 20.00815.0 ± 5.2021
    No. of car accidentc
     Q1 (lowest)9.9 ± 14.60542.1 ± 2.6010
     Q221.9 ± 23.00772.1 ± 2.6012
     Q331.2 ± 19.60723.6 ± 4.4023
     Q4 (highest)43.0 ± 20.40814.8 ± 5.2021
    Industrial power usage (Kwh/km2)d
     Q1 (lowest)9.8 ± 13.80461.6 ± 1.504
     Q228.2 ± 26.50814.2 ± 4.9023
     Q338.4 ± 18.61785.0 ± 5.1021
     Q4 (highest)33.8 ± 22.20792.6 ± 3.7016
    Generation of electricity (Kwh)
     No27.0 ± 22.80772.3 ± 2.8014
     Yes37.1 ± 21.20815.1 ± 5.4023
    COPM10
    exp(β)95% CIexp(β)95% CI
    Population density (person/km2)a
    Q1(lowest)1.001.00
    Q23.441.96–6.043.001.46–6.17
    Q35.073.00–8.583.891.97–7.68
    Q4(highest)3.702.19–6.261.59*0.79–3.18
    No. of car registrationsb
    Q1(lowest)1.001.00
    Q23.531.96–6.381.500.70–3.21
    Q33.862.22–6.721.45*0.71–2.95
    Q4(highest)5.753.32–9.992.491.23–5.04
    No. of car accidentc
    Q1(lowest)1.001.00
    Q22.201.23–3.931.000.47–2.13
    Q33.141.84–5.361.67*0.84–3.32
    Q4(highest)4.332.54–7.382.231.13–4.40
    Industrial power usage (Kwh/ km2)d
    Q1(lowest)1.001.00
    Q22.881.64–5.072.691.31–5.52
    Q33.932.37–6.513.191.66–6.12
    Q4(highest)3.462.09–5.711.70*0.88–3.27
    Generation of electricity (Kwh)
    No1.001.00
    Yes1.371.01–1.862.271.60–3.21
    Table 1 Descriptive statistics of the emission inventories of South Korea in the winter of 2015

    Table 2 Number of days the particulate matter 10 (PM10) and carbon monoxide (CO) levels in the winter of 2015 exceeded government thresholds

    apopulation density(persons/km2): Q1 < 98.87, 98.87 ≤ Q2 < 459.19, 459.19 ≤ Q3 < 6329.12, 6329.12 ≤ Q4

    bNo. of car registrations(1000 cars): Q1 < 16.43, 16.43 ≤ Q2 < 48.90, 48.90 ≤ Q3 < 98.36, 98.36 ≤ Q4

    cNo. of car accident: Q1 < 213.00, 213.00 ≤ Q2 < 729.00, 729.00 ≤ Q3 < 1521.00, 1521.00 ≤ Q4

    dIndustrial power usage (Kwh/km2): Q1 < 300,926.80, 300,926.80 ≤ Q2 < 1,588,265.70, 1,588,265.70 ≤ Q3 < 8,306,667.40, 8,306,667.40 ≤ Q4

    Table 3 Association between the number of days of excessive particulate matter 10 (PM10) and carbon monoxide (CO) in the winter of 2015 and concentration of putative contaminant sources

    apopulation density(persons/km2): Q1 < 98.87, 98.87 ≤ Q2 < 459.19, 459.19 ≤ Q3 < 6329.12, 6329.12 ≤ Q4

    bNo. of car registrations(car/1000): Q1 < 16.43, 16.43 ≤ Q2 < 48.90, 48.90 ≤ Q3 < 98.36, 98.36 ≤ Q4

    cNo. of car accident: Q1 < 213.00, 213.00 ≤ Q2 < 729.00, 729.00 ≤ Q3 < 1521.00, 1521.00 ≤ Q4

    dIndustrial power usage (Kwh/km2): Q1 < 300,926.80, 300,926.80 ≤ Q2 < 1,588,265.70, 1,588,265.70 ≤ Q3 < 8,306,667.40, 8,306,667.40 ≤ Q4


    Ann Occup Environ Med : Annals of Occupational and Environmental Medicine
    Close layer
    TOP