Cooking oil fumes (COFs) from cooking with hot oil may contribute to the pathogenesis of lung cancer. Since 2021, occupational lung cancer for individual cafeteria workers has been recognized in South Korea. In this study, we aimed to identify the distribution of lung-imaging reporting and data system (Lung-RADS) among cafeteria workers and to determine factors related to Lung-RADS distribution.
We included 203 female participants who underwent low-dose computed tomography (LDCT) screening at a university hospital and examined the following variables: age, smoking status, second-hand smoke, height, weight, and years of service, mask use, cooking time, heat source, and ventilation. We divided all participants into culinary and non-culinary workers. Binomial logistic regression was conducted to determine the risk factors on LDCT of Category ≥ 3, separately for the overall group and the culinary group.
In this study, Lung-RADS-positive occurred in 17 (8.4%) individuals, all of whom were culinary workers. Binary logistic regression analyses were performed and no variables were found to have a significant impact on Lung-RADS results. In the subgroup analysis, the Lung-RADS-positive, and -negative groups differed only in ventilation. Binary logistic regression showed that the adjusted odds ratio (aOR) of the Lung-RADS-positive group for inappropriate ventilation at the workplace was 14.89 (95% confidence interval [CI]: 3.296–67.231) compared to appropriate ventilation as the reference, and the aOR for electric appliances at home was 4.59 (95% CI: 1.061–19.890) using liquid fuel as the reference.
The rate of Lung-RADS-positive was significantly higher among culinary workers who performed actual cooking tasks than among nonculinary workers. In addition, appropriate ventilation at the workplace made the LDCT results differ. More research is needed to identify factors that might influence LDCT findings among culinary workers, including those in other occupations.
Citations
Recently, lung cancer screenings based on age and smoking history using low-dose computed tomography (LDCT) have begun in Korea. This study aimed to evaluate the distribution of lung imaging reporting and data system (Lung-RADS) categories in shipyard workers exposed to lung carcinogens such as nickel, chromium, and welding fumes according to job type, to provide basic data regarding indications for LDCT in shipyard workers.
This study included 6,326 workers from a single shipyard, who underwent health examinations with LDCT between January 2010 and December 2018. Data on age, smoking status and history, medical history, and job type were investigated. The participants were categorized into high-exposure, low-exposure, and non-exposure job groups based on the estimated exposure level of nickel, chromium, and welding fumes according to job type. Cox proportional hazard regression analysis was used to determine the difference between exposure groups in Lung-RADS category ≥ 3 (3, 4A, and 4B).
Out of all participants, 97 (1.5%) participants were classified into Lung-RADS category ≥ 3 and 7 (0.1%) participants were confirmed as lung cancer. The positive predictive value (ratio of diagnosed lung cancer cases to Lung-RADS category ≥ 3) was 7.2%. The hazard ratio (HR) of Lung-RADS category ≥ 3 was 1.451 (95% confidence interval [CI]: 0.911–2.309) in low-exposure and 1.692 (95% CI: 1.007–2.843) in high-exposure job group. Adjusting for age and pack-years, the HR was statistically significant only in the high-exposure job group (HR: 1.689; 95% CI: 1.004–2.841).
Based on LDCT and Lung-RADS, among male shipyard workers, Lung-RADS category ≥ 3 were significantly higher in the high-exposure job group. Their HR tended to be > 1.0 and was statistically significant in the high-exposure job group. Additional studies should be conducted to establish more elaborate LDCT indications for occupational health examination.
Citations
The destruction of circadian rhythms by night shift work affects major circadian genes, which are known to play a role in advancing or killing the cell cycle through tumor suppressor genes. To find out whether night shift work affects the incidence of colorectal cancer, which was found to be associated with long-term night shift work in previous studies, we surveyed effect of night shift work on colorectal polyps that have a higher incidence than colorectal cancer and can progress to colorectal cancer.
To examine the correlation between rotating night shifts and colorectal polyps, a survey was conducted with 299 men aged 40–60 years from two university hospitals. We examined lifestyle, work history, work patterns, and colonoscopy results. The differences in prevalence among the groups was compared, and prevalence ratio (PR) was calculated via generalized linear modeling.
The prevalence of colorectal polyps in night shift and non-shift workers were 53.0% and 33.5%, respectively. After adjusting for age, smoking status, dietary habits, family history of colorectal cancer, obesity, job type, night shift work (PR: 1.13, 95% CI: 1.02–1.25) was a risk factor of colorectal polyps.
The risk of colorectal polyps was greater in night shift workers than non-shift workers. Also risk of colorectal polyp was higher in older group. Our study investigated colorectal polyp instead of colorectal cancer and lacks information about types and gene mutations of colorectal polyps. Further study is needed to clarify effect of night shift work on development of colorectal cancer.
Citations
The Occupational Safety and Health Research Institute (OSHRI) of the Korea had not recognized gastrointestinal cancer as work-related disease during their evaluation. However, in 2018 OSHRI recognized gastric and rectal cancers as work-related disease in asbestos-exposed workers. We present 2 such cases along supportive evidence of causation.
Patient A: A 57-year-old man had worked for about 40 years since 1978 as an oxygen cutter at workplaces that dismantle ships, buildings, boilers, and thermal power plants. In November 2016, endoscopy and biopsy confirmed the diagnosis of advanced gastric cancer, for which he underwent subtotal gastrectomy and chemotherapy; however, he later died of the cancer. Patient B: A 71-year-old man had worked in shipbuilding and repair workplaces for approximately 49 years, being employed in pipe laying, asbestos insulation installation, grinding, and other ship repair work. In 2003, he was diagnosed of rectal cancer by abdominal computed tomography. He accordingly underwent surgical removal of the cancer. Based on the occupational history of the 2 patients and our review of the relevant literature addressing the occupational environment, we concluded that both patients had continuous exposure to high levels of asbestos while performing their jobs for 40 and 49 years, respectively.
Both patients had a history of smoking and drinking (non-occupational personal risk factors). However, the possibility of an increased risk of gastric and rectal cancers from asbestos exposure cannot be excluded. Therefore, we considered that occupational exposure to asbestos had contributed to the cancer diagnosis in these cases. Workers exposed to asbestos should be made aware of the possibility of gastric or rectal cancer, and should undergo monitoring and medical examinations. Appropriate compensation for gastric and rectal cancers that occur in workers exposed to asbestos are anticipated in future.
Citations
The purpose of this report is to introduce the occupational cancer surveillance system, implemented in June 2018, and to share the results of our cooperative program.
The cooperative program begins when the patient is diagnosed with acute myeloid leukemia (AML). Newly diagnosed AML patients are admitted to the internal medicine hematology department, then attending hematology physician requests a consultation from the occupational and environmental medicine (OEM) department. The OEM doctor next visits the hospitalized patient and interviews them to take their occupational history, and preliminarily evaluates the likelihood that the condition is associated with occupation. If the patient wants to apply for compensation through the Korea Workers' Compensation & Welfare Service, the patient was informed to visits the outpatient clinic of the OEM department and requests a ‘work-relatedness evaluation report’ for use in applying for compensation.
Among the 103 patients, who received an OEM departmental work history evaluation, 18 patients were considered to have a work-related incidence and 12 patients were registered in the Industrial Accident Compensation Insurance system.
The present report provides data on a sustainable model for identifying occupational disease in a general hospital setting, while also informing patients about their occupational rights.
Citations
The risk factors for renal cancer include smoking, obesity, hypertension, and exposure to trichloroethylene. Recent studies have shown that low sunlight exposure increases the risk of developing a range of cancers, including renal cancer. Given that most of the daytime is spent at work, a lack of occupational sunlight exposure can be a risk factor for renal cancer. Therefore, this study examined the relationship between occupational sunlight exposure and the incidence of renal cancer.
This was a university hospital-based case-control study on renal cancer. Of the 706 newly diagnosed patients with renal cell carcinoma (RCC), 633 cases were selected; 73 who had no occupational history were excluded. In addition, 633 controls were selected from the general population after 1:1 matching with respect to sex, age (within 5 years), and residential area (constituency-level). Information on sunlight exposure by the occupational group was referred to data from France. To estimate the association between occupational sunlight exposure and the RCC risk, the odds ratios (ORs) were calculated using conditional logistic regression analysis.
Sunlight exposure was divided into quartiles and the risk of RCC was analyzed. The adjusted OR of RCC (OR: 0.664, 95% confidence interval: 0.449–0.983) was significantly lower for the Q4 group than Q1 group but the Q2 and Q3 groups did not show significant results. The risk of RCC tended to decrease with increasing exposure to sunlight (
Higher occupational sunlight exposure reduces the risk of RCC.
Recent studies suggest that night shiftwork may increase the risk of prostate cancer and elevated serum prostate-specific antigen (PSA) level. The purpose of this study was to verify whether rotating night shiftwork affects serum PSA level.
This study included 3,195 male production workers who work in a large tire manufacturing factory. Serum PSA levels were measured and the data on related factors were obtained.
The mean serum PSA level was 0.98 ± 0.79 ng/mL. PSA levels were significantly lower in the younger age group, the obese group, and regular exercise group. PSA levels were lower in night shift workers (n = 2,832) compared to day workers (n = 363), but the difference was not statistically significant.
Unlike previous studies, we did not find any evidence that night shiftwork results in an increase in serum PSA levels. Further research and consistent results are needed to elucidate the association between night shiftwork and the effect on the prostate.
Citations
Research on carcinogens causing occupational cancer has been updated. Further, social interest in occupational cancer has increased. In addition, the standard for recognizing cancer as a work-related disease has also been revised. The present study aims to describe the distribution of occupational cancer claims or its approval rate and their association with work-related variables.
We analyzed 1299 claim cases for occupational cancer from 2010 to 2016 provided by the Korea Workers’ Compensation and Welfare Service (KCOMWEL). The status of approval rate was shown by year, sex, industry, occupation, age of diagnosis, duration from employment to diagnosis, and cancer site.
The approval rate was 39.0% from 2010 to 2016 and tended to increase annually since 2011. Both the number of claims and the approval rate were higher in men. Mining and quarrying showed the highest approval rate (78.4%). The approval rates by age of diagnosis and duration from employment to diagnosis increased as the time periods increased. Respiratory organ had the highest number of claims and the highest approval rate by cancer site.
The approval rate of occupational cancer has shown an increasing trend since 2011. The increase of occupational carcinogens and cancer sites and the improvement of social awareness about occupational cancer could have resulted in this trend. The present study provides unique, and the latest and most accurate findings on occupational cancer data of recent 7 years that could be helpful to researchers or policy makers on occupational cancer.
Citations
This study aimed to enhance understanding of the epidemiologic characteristics of asbestos-related diseases, and to provide information that could inform policy-making aimed at prevention and compensation for occupational asbestos exposure, through analyzing asbestos-related occupational disease claims to Korea Workers’ Compensation and Welfare Service from 2011 to 2015.
We analyzed 113 workers who filed medical care claims or survivor benefits for asbestos exposure and occupational-related disease from 2011 to 2015. Among these claims, we selected approved workers’ compensation claims relating to malignant mesothelioma and lung cancer, and analyzed the general characteristics, exposure characteristics, pathological characteristics, and occupation and industry distribution.
Malignant mesothelioma and lung cancer occurred predominantly in males at 89.7 and 94%, respectively. The mean age at the time of diagnosis for malignant mesothelioma and lung cancer was 59.5 and 59.7 years, respectively, while the latency period for malignant mesothelioma and lung cancer was 34.1 and 33.1 years, respectively. The companies involving exposed workers were most commonly situated within the Busan-Ulsan-Gyeongnam region. Histology results for lung cancer indicated adenocarcinoma as the most common form, accounting for approximately one half of all claims, followed by squamous cell carcinoma, and small cell lung cancer. The most common occupation type was construction in respect of malignant mesothelioma, and shipbuilding in respect of lung cancer.
Considering the long latency period of asbestos and that the peak period of asbestos use in Korea was throughout the mid-1990s, damage due to asbestos-related diseases is expected to show a continued long-term increase. Few studies providing an epidemiologic analysis of asbestos-related diseases are available; therefore, this study may provide baseline data to assist in predicting and preparing for future harm due to asbestos exposure.
DUIH
Citations
We reviewed articles to clarify the current evidence status for 1) types of cancer which related to benzene exposure, and 2) certain benzene exposure level which might cause the hematopoietic cancers. Hematopoietic function of the bone marrow is involved in the production of all blood cells types. The benzene metabolites including benzoquinone and mucoaldehyde affect hematopoietic stem cells as well as differentiation steps of progenitor cells for each blood cell. Hence, we concluded that benzene was associated with all lymphohematic carcinogenesis. First, it is supported by biological plausibility. Second, it is supported by meta-analysis although sing study did not show relationship due to lack of sample size or statistical power. More recent studies show lesser exposed level related to risk of cancer, compare to past studies did. Actually, early studies show the risk of malignancies in workers who exposed more than 200 ppm-years. However, only 0.5 to 1 ppm-year benzene exposed show significant linking to risk of malignancies in recent study. As reviewed research articles, we concluded that the relatively lower exposure level, such as 0.5–1 ppm-year, will be considering at risk of hematopoietic cancer. However, more research needs to be done on dose-response analysis.
Citations
The Korea Radiation Effect & Epidemiology Cohort - The resident cohort (KREEC-R) study concluded that there is no epidemiological or causal evidence supporting any increase in cancer risks resulting from radiation from Korean nuclear power plants (NPPs). But the risks of thyroid cancer in women were significantly higher in residents living near NPPs than control. Debate about the cause of the pattern of thyroid cancer incidence in women is ongoing and some researchers argue that detection bias influenced the result of KREEC-R study. Therefore there was a need to investigate whether residents living near NPPs who were assessed in the KREEC-R were actually tested more often for thyroid cancer. We evaluated the possibility of detection bias in the finding of the KREEC-R study based on materials available at this time.
Using the KREEC-R raw data, we calculated age standardized rates (ASRs) of female thyroid cancer and re-analyzed the results of survey on the use of medical services. We also marked the administrative districts of residents who received the Radiation Health Research Institute (RHRI) health examinations and those in which thyroid cancer case occurred as per the Chonnam National University Research Institute of Medical Sciences (RIMS) final report on maps where the locations of NPPs and 5 km-radii around them were also indicated. And we compared the incidence rates of Radiation-induced cancer measured between the first period when RHRI health examinations were not yet implemented, and the second period when the RHRI health examinations were implemented.
The ASR for the far-distance group, which comprised residents living in areas outside the 30 km radius of the NPPs, increased rapidly after 2000; however, that of the exposed group, which comprised residents living within a 5 km radius of the NPPs, started to increase rapidly even before 1995. The frequencies of the use of medical services were significantly higher in the intermediate proximate group, which comprised residents living within a 5–30 km radius of the NPPs, than in the exposed group in women. In case of female thyroid cancer, the second period ASR was higher than the first period ASR, but in case of female liver cancer and female stomach cancer no significant difference were observed between the periods. On map, many administrative districts of residents who received RHRI health examinations and most administrative districts in which thyroid cancer case occurred on RIMS final report were outside 5 km-radii around NPPs.
We could not find any evidence supporting the assertion that detection bias influenced the increased risks of female thyroid cancer observed in the exposed group of the KREEC-R study, as opposed to the control group.
Citations
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds containing carbon and hydrogen. PAHs have carcinogenicity in human. Cancers related with PAHs include cancers of lung, skin, bladder, and others. International Agency for Research on Cancer (IARC) has determined several occupations that can be exposure to PAHs were probable carcinogens to human. National Toxicology Program (NTP) classified coal tars and coal tar pitches, and coke oven emissions as known to human carcinogens, and US Environmental Protection Agency (EPA) classified coke oven emissions as human carcinogen.
PAHs can be produced both naturally and artificially. Sources of occupational exposure include coal gasification, coke production, coal tar distillation, aluminium production, and so on. Diesel exhaust emission contains large amount of PAHs. Cigarette smoking also contains many PAHs, which is the important source of environmental source of PAHs.
The evaluation for work-relatedness and standards for recognition of occupational cancers should focus on occupations that can be exposed to PAHs. In Korea, standards for recognition of occupational cancers related with PAHs are following: lung cancers related with more than 10 years exposure to coal tar pitch, lung and skin cancers related with soot exposure, and skin cancers related with more than 10 years exposure to coal tar. When applying these standards, occupations that can be exposed to PAHs should be focused on. In addition, latent period for solid cancer should be considered. In addition to these occupations, diesel engine combustion and firefighters can be exposed to PAHs.
Citations
Comprehensive consideration is necessary for setting guidelines to evaluate evidence of occupational cancer in painters due to work-related exposure to carcinogens in paint (a phenomenon termed herein as “work-relatedness”). The aim of the present research is to perform a comprehensive review and to suggest criteria for the provision of compensation for occupational neoplasm among painters in Korea. In order to perform a comprehensive review, this study assessed and evaluated scientific reports of carcinogenicities from the International Agency for Research on Cancer (IARC) and the Industrial Injuries Advisory Council (IIAC), as well as reviewed the existing literature about occupational exposure among painters in Korea and the epidemiologic investigations of claimed cases of cancer among painters in Korea. The IARC declares that occupational exposures in commercial painting are classified as Group 1 carcinogens for lung cancer and bladder cancer among painters. The epidemiologic studies show consistent causal relationships between occupational exposure in painters and cancers such as lung cancer [meta relative risk: 1.34 (95% confidence intervals (CIs): 1.23-1.41)] and bladder cancer [meta relative risk: 1.24 (95% CIs: 1.16-1.33)]. In reviewing occupational cancer risks for commercial painters, the Industrial Injuries Advisory Council (IIAC) confirms occupational cancer risks for lung and bladder cancer among commercial painters. According to the IIAC, however, the elevated cancer risks reported in existing literature are not doubled in either lung or bladder cancer in commercial painters relative to the risks of these cancers in the general population. Based on our review of existing Korean articles on the topic, painters are exposed to potential carcinogens including polycyclic aromatic hydrocarbons (PAHs), benzene, hexavalent chrome, crystalized silica, asbestos, and other agents, and relative levels are estimated within commercial painting processes. However, the cancer risks of occupational exposure to Group 1 carcinogens for lung and bladder cancer in painters per se are not fully assessed in existing Korean articles. Total work duration, potential carcinogens in paint, mixed exposure to paints across various industries such as construction and shipbuilding, exposure periods, latent periods, and other factors should be considered on an individual basis in investigating the work-relatedness of certain types of cancer in commercial painters.
Citations
Ionizing radiation is a well-known carcinogen, and is listed as one carcinogenic agent of occupational cancer. Given the increase in the number of workers exposed to radiation, as well as the increase in concern regarding occupational cancer, the number of radiation-related occupational cancer claims is expected to increase. Unlike exposure assessment of other carcinogenic agents in the workplace, such as asbestos and benzene, radiation exposure is usually assessed on an individual basis with personal dosimeters, which makes it feasible to assess whether a worker’s cancer occurrence is associated with their individual exposure. However, given the absence of a threshold dose for cancer initiation, it remains difficult to identify radiation exposure as the root cause of occupational cancer. Moreover, the association between cancer and radiation exposure in the workplace has not been clearly established due to a lack of scientific evidence. Therefore, criteria for the recognition of radiation-related occupational cancer should be carefully reviewed and updated with new scientific evidence and social consensus. The current criteria in Korea are valid in terms of eligible radiogenic cancer sites, adequate latent period, assessment of radiation exposure, and probability of causation. However, reducing uncertainty with respect to the determination of causation between exposure and cancer and developing more specific criteria that considers mixed exposure to radiation and other carcinogenic agents remains an important open question.
Citations
The objective of this study is to suggest revised recognition standards for occupational disease due to chromium (VI) by reflecting recent domestic and international research works and considering domestic exposure status with respect to target organs, exposure period, and cumulative exposure dose in relation to the chromium (VI)-induced occupational disease compensation.
In this study, the reports published by major international institutions such as World Health Organization (WHO) International Agency for Research on Cancer (IARC) (2012), Occupational Safety and Health Administration (OSHA) (2006), National Institute for Occupational Safety and Health (NIOSH) (2013), American Conference of Governmental Industrial Hygienists (ACGIH) (2004), National Toxicology Program (NTP) (2014), and Agency for Toxic Substances and Disease Registry (ASTDR) (2012) were reviewed and the recent research works searched by PubMed were summarized.
Considering the recent research works and the domestic situation, only lung cancer is conserved in the legislative bill in relation to chromium (VI), and the exposure period is not included in the bill. Nasal and paranasal sinus cancer was excluded from the list of cancers that are compensated as the chromium (VI)- induced occupational disease, while lung cancer remains in the list. In the view of legislative unity, considering the fact that only the cancers having sufficient evidence are included in the conventional list of cancers compensated as occupational disease, nasal and paranasal sinus cancer having limited evidence were excluded from the list.
The exposure period was also removed from the legislative bill due to the insufficient evidence. Recent advices in connection with cumulative exposure dose were proposed, and other considerable points were provided with respect to individual occupational relevance.
It is suggested that the current recognition standard which is “Lung cancer or nasal and paranasal sinus cancer caused by exposure to chromium (VI) or compounds thereof (exposure for two years or longer), or nickel compounds” should be changed to “Lung cancer caused by exposure to chromium (VI) or compounds thereof, and lung cancer or nasal and paranasal sinus cancer caused by exposure to nickel compounds”.
Citations
Probability of causation (PC) is a reasonable way to estimate causal relationships in radiation-related cancer. This study reviewed the international trend, usage, and critiques of the PC method. Because it has been used in Korea, it is important to check the present status and estimation of PC in radiation-related cancers in Korea.
Research articles and official reports regarding PC of radiation-related cancer and published from the 1980s onwards were reviewed, including studies used for the revision of the Korean PC program. PC has been calculated for compensation-related cases in Korea since 2005.
The United States National Institutes of Health first estimated the PC in 1985. Among the 106 occupational diseases listed in the International Labor Organization Recommendation 194 (International Labor Office (ILO), ILO List of Occupational Diseases, 2010), PC is available only for occupational cancer after ionizing radiation exposure. The United States and United Kingdom use PC as specific criteria for decisions on the compensability of workers’ radiation-related health effects. In Korea, PC was developed firstly as Korean Radiation Risk and Assigned Share (KORRAS) in 1999. In 2015, the Occupational Safety and Health Research Institute and Radiation Health Research Institute jointly developed a more revised PC program, Occupational Safety and Health-PC (OSH-PC). Between 2005 and 2015, PC was applied in 16 claims of workers’ compensation for radiation-related cancers. In most of the cases, compensation was given when the PC was more than 50%. However, in one case, lower than 50% PC was accepted considering the possibility of underestimation of the cumulative exposure dose.
PC is one of the most advanced tools for estimating the causation of occupational cancer. PC has been adjusted for baseline cancer incidence in Korean workers, and for uncertainties using a statistical method. Because the fundamental reason for under- or over-estimation is probably inaccurate dose reconstruction, a proper guideline is necessary.
Citations
The goal of this study was to review the scientific basis for the recognition of occupational cancer, in relation to hepatitis viral infections in Korea. Most Hepatitis B virus (HBV) infections in Korea occur as vertical infections, but these are decreasing rapidly due to vaccination. Hepatitis C virus (HCV) is known to be transmitted through parenteral routes, but the transmission route is often unclear. Most occupational infections of hepatitis virus involve accidental injuries of medical institution workers while using virus-contaminated medical devices. Many cohort studies and case-control studies have consistently reported that HBV and HCV infection increases the risk of hepatocellular carcinoma (HCC) and the strength of this association is high. Non-Hodgkin’s lymphoma appears to be associated with HCV. Cholangiocarcinoma, pancreatic cancer, leukemia, and thyroid cancer are considered to be less related or unrelated to epidemiological causation. There are no uniform international specific criteria for occupational cancer caused through occupational exposure to a hepatitis virus. In establishing appropriate standards applicable to Korea, there should be sufficient consideration of latency, virus exposure levels and frequency, and other cancers, apart from HCC.
In conclusion, we recommend keeping the current specific criteria. However, if a worker is injured at work when using a sharp medical device, and HBV and HCV viral infections are confirmed through serologic tests; if the worker is diagnosed as having a chronic HBV or HCV infection, a subsequent HCC (or Non-Hodgkin’s lymphoma following chronic HCV infection) can then be considered highly related to the worker’s occupation.
Citations
Crystalline silica has been classified as a definite carcinogen (Group 1) causing lung cancer by the International Agency for Research on Cancer (IARC). In Korea, crystalline silica has been the most common causal agent for workers to apply to the Korea Workers’ Compensation and Welfare Service (KWCWS). We used KWCWS data to evaluate workers’ crystalline silica exposure levels according to their occupations and industries, and reviewed research papers describing the dose-response relationship between cumulative exposure levels and lung cancer incidence. In addition, we reviewed lung cancer cases accepted by the KWCWS, and suggest new criteria for defining occupational cancer caused by crystalline silica in Korea. Rather than confining to miners, we propose recognizing occupational lung cancer whenever workers with pneumoconiosis develop lung cancer, regardless of their industry. Simultaneous exposure and lag time should also be considered in evaluations of work-relatedness.
Citations
In 2009, Korea banned the import, transport, and use of asbestos, and the Asbestos Injury Relief Act (AIRA) was promulgated in 2011. Two environmental health centers for asbestos (EHCA), including Pusan National University Yangsan Hospital (PNUYH) and SoonChunHyang University Cheonan Hospital (SCHUCH), were adapted to find environmental asbestos-related diseases (ARDs) and to support the purposes of AIRA. EHCA conducted a health impact survey (HIS) on persons who resided or reside near asbestos factories or mines. A total of 13,433 persons have taken screening examinations in PNUYH EHCA, and 623 persons (4.6%) have had secondary examinations. Of the 21,014 persons who had screening examinations in SCHUCH EHCA, 2490 persons (11.8%) had secondary examinations. Some of those who tested positive for ARDs through HISs filed applications for the asbestos victims’ medical pocketbook (AVMP). Approximately 116 and 612 persons received AVMPs as a result of PNUYH and SCHUCH examinees, respectively. EHCAs have conducted HISs, public relations, and education for asbestos victims, ordinary citizens, and physicians. As HISs are based on voluntary participation, they does not monitor high-risk groups. Active surveillance focusing on high-risk groups has been blocked by the personal information protection act. Although important work has been performed in finding environmental asbestos victims and increasing public awareness on asbestos, it is necessary to improve the current system and registration.
Citations
Lung cancer has high mortality and incidence rates. The leading causes of lung cancer are smoking and radon exposure. Indeed, the World Health Organization (WHO) has categorized radon as a carcinogenic substance causing lung cancer. Radon is a natural, radioactive substance; it is an inert gas that mainly exists in soil or rock. The gas decays into radioactive particles called radon progeny that can enter the human body through breathing. Upon entering the body, these radioactive elements release α-rays that affect lung tissue, causing lung cancer upon long-term exposure thereto. Epidemiological studies first outlined a high correlation between the incidence rate of lung cancer and exposure to radon progeny among miners in Europe. Thereafter, data and research on radon exposure and lung cancer incidence in homes have continued to accumulate. Many international studies have reported increases in the risk ratio of lung cancer when indoor radon concentrations inside the home are high.
Although research into indoor radon concentrations and lung cancer incidence is actively conducted throughout North America and Europe, similar research is lacking in Korea. Recently, however, studies have begun to accumulate and report important data on indoor radon concentrations across the nation. In this study, we aimed to review domestic and foreign research into indoor radon concentrations and to outline correlations between indoor radon concentrations in homes and lung cancer incidence, as reported in ecological studies thereof.
Herein, we noted large differences in radon concentrations between and within individual countries. For Korea, we observed tremendous differences in indoor radon concentrations according to region and year of study, even within the same region. In correlation analysis, lung cancer incidence was not found to be higher in areas with high indoor radon concentrations in Korea.
Through our review, we identified a need to implement a greater variety of statistical analyses in research on indoor radon concentrations and lung cancer incidence. Also, we suggest that cohort research or patient-control group research into radon exposure and lung cancer incidence that considers smoking and other factors is warranted.
Citations
Although the incidence and mortality for most cancers such as lung and colon are decreasing in several countries, they are increasing in several developed countries because of an unhealthy western lifestyles including smoking, physical inactivity and consumption of calorie-dense food. The incidences for lung and colon cancers in a few of these countries have already exceeded those in the United States and other western countries. Among them, lung cancer is the main cause of cancer death in worldwide. The cumulative survival rate at five years differs between 13 and 21 % in several countries. Although the most important risk factors are smoking for lung cancer, however, the increased incidence of lung cancer in never smokers(LCINS) is necessary to improve knowledge concerning other risk factors. Environmental factors and genetic susceptibility are also thought to contribute to lung cancer risk. Patients with lung adenocarcinoma who have never smoking frequently contain mutation within tyrosine kinase domain of the epidermal growth factor receptor(EGFR) gene. Also, K-ras mutations are more common in individuals with a history of smoking use and are related with resistance to EFGR-tyrosine kinase inhibitors. Recently, radon(Rn), natural and noble gas, has been recognized as second common reason of lung cancer. In this review, we aim to know whether residential radon is associated with an increased risk for developing lung cancer and regulated by several genetic polymorphisms.
Citations
Lung cancer was the second highest absolute cancer incidence globally and the first cause of cancer mortality in 2014. Indoor radon is the second leading risk factor of lung cancer after cigarette smoking among ever smokers and the first among non-smokers. Environmental burden of disease (EBD) attributable to residential radon among non-smokers is critical for identifying threats to population health and planning health policy.
To identify and retrieve literatures describing environmental burden of lung cancer attributable to residential radon, we searched databases including Ovid-MEDLINE, -EMBASE from 1980 to 2016. Search terms included patient keywords using ‘lung’, ‘neoplasm’, exposure keywords using ‘residential’, ‘radon’, and outcomes keywords using ‘years of life lost’, ‘years of life lost due to disability’, ‘burden’. Searching through literatures identified 261 documents; further 9 documents were identified using manual searching. Two researchers independently assessed 271 abstracts eligible for inclusion at the abstract level. Full text reviews were conducted for selected publications after the first assessment. Ten studies were included in the final evaluation.
Global disability‐adjusted life years (DALYs)(95 % uncertainty interval) for lung cancer were increased by 35.9 % from 23,850,000(18,835,000-29,845,000) in 1900 to 32,405,000(24,400,000-38,334,000) in 2000. DALYs attributable to residential radon were 2,114,000(273,000-4,660,000) DALYs in 2010. Lung cancer caused 34,732,900(33,042,600 ~ 36,328,100) DALYs in 2013. DALYs attributable to residential radon were 1,979,000(1,331,000-2,768,000) DALYs for in 2013. The number of attributable lung cancer cases was 70-900 and EBD for radon was 1,000-14,000 DALYs in Netherland. The years of life lost were 0.066 years among never-smokers and 0.198 years among ever-smoker population in Canada.
In summary, estimated global EBD attributable to residential radon was 1,979,000 DALYs for both sexes in 2013. In Netherlands, EBD for radon was 1,000–14,000 DALYs. Smoking population lost three times more years than never-smokers in Canada. There was no study estimating EBD of residential radon among never smokers in Korea and Asian country. In addition, there were a few studies reflecting the age of building, though residential radon exposure level depends on the age of building. Further EBD study reflecting Korean disability weight and the age of building is required to estimate EBD precisely.
The online version of this article (doi:10.1186/s40557-016-0092-5) contains supplementary material, which is available to authorized users.
Citations
Lung cancer is a leading cause of cancer-related death in the world. Smoking is definitely the most important risk factor for lung cancer. Radon (222Rn) is a natural gas produced from radium (226Ra) in the decay series of uranium (238U). Radon exposure is the second most common cause of lung cancer and the first risk factor for lung cancer in never-smokers.
Case–control studies have provided epidemiological evidence of the causative relationship between indoor radon exposure and lung cancer. Twenty-four case–control study papers were found by our search strategy from the PubMed database. Among them, seven studies showed that indoor radon has a statistically significant association with lung cancer. The studies performed in radon-prone areas showed a more positive association between radon and lung cancer. Reviewed papers had inconsistent results on the dose–response relationship between indoor radon and lung cancer risk.
Further refined case–control studies will be required to evaluate the relationship between radon and lung cancer. Sufficient study sample size, proper interview methods, valid and precise indoor radon measurement, wide range of indoor radon, and appropriate control of confounders such as smoking status should be considered in further case–control studies.
Citations
Exposure to radon gas is the second most common cause of lung cancer after smoking. A large number of studies have reported that exposure to indoor radon, even at low concentrations, is associated with lung cancer in the general population. This paper reviewed studies from several countries to assess the attributable risk (AR) of lung cancer death due to indoor radon exposure and the effect of radon mitigation thereon. Worldwide, 3–20 % of all lung cancer deaths are likely caused by indoor radon exposure. These values tend to be higher in countries reporting high radon concentrations, which can depend on the estimation method. The estimated number of lung cancer deaths due to radon exposure in several countries varied from 150 to 40,477 annually. In general, the percent ARs were higher among never-smokers than among ever-smokers, whereas much more lung cancer deaths attributable to radon occurred among ever-smokers because of the higher rate of lung cancers among smokers. Regardless of smoking status, the proportion of lung cancer deaths induced by radon was slightly higher among females than males. However, after stratifying populations according to smoking status, the percent ARs were similar between genders. If all homes with radon above 100 Bq/m3 were effectively remediated, studies in Germany and Canada found that 302 and 1704 lung cancer deaths could be prevented each year, respectively. These estimates, however, are subject to varying degrees of uncertainty related to the weakness of the models used and a number of factors influencing indoor radon concentrations.
Citations
Carcinogenicity of asbestos has been well established for decades and it has similar approval standards in most advanced countries based on a number of studies and international meetings. However, Korea has been lagging behind such international standards. In this study, we proposed the approval standards of an occupational cancer due to asbestos through intensive review on the Helsinki Criteria, post-Helsinki studies, job exposure matrix (JEM) based on the analysis of domestic reports and recognized occupational lung cancer cases in Korea. The main contents of proposed approval standards are as follows; ① In recognizing an asbestos-induced lung cancer, diagnosis of asbestosis should be based on CT. In addition, initial findings of asbestosis on CT should be considered. ② High Exposure industries and occupations to asbestos should be also taken into account in Korea ③ An expert’s determination is warranted in case of a worker who has been concurrently exposed to other carcinogens, even if the asbestos exposure duration is less than 10 years. ④ Determination of a larynx cancer due to asbestos exposure has the same approval standards with an asbestos-induced lung cancer. However, for an ovarian cancer, an expert’s judgment is necessary even if asbestosis, pleural plaque or pleural thickening and high concentration asbestos exposure are confirmed. ⑤ Cigarette smoking status or the extent should not affect determination of an occupational cancer caused by asbestos as smoking and asbestos have a synergistic effect in causing a lung cancer and they are involved in carcinogenesis in a complicated manner.
Citations
The International Agency for Research on Cancer classifies asbestos as belonging to Carcinogen Group 2A for gastric cancer. We herein report a case of gastric cancer associated with asbestosis and describe the work-related and risk assessments of asbestos exposure for gastric cancer.
The 66-year-old male patient in our case worked in asbestos spinning factories. His level of cumulated asbestos fiber exposure was estimated to be 38.0–71.0 f-yr/cc. Thus, the Excess Life Cancer Risk for lung cancer associated with asbestos exposure was 9,648×10−5, almost 9,600 times the value recommended by the United States of America Environmental Protection Agency (1 × 10−5). The relative risk of developing lung cancer for this patient was more than 25 f-yr/cc, a well-known criterion for doubling the risk of lung cancer.
The patient’s exposure to high-dose asbestos was sufficient to increase his risk of gastric cancer because as the risk of lung cancer increased, the risk of gastric cancer was due to increase as well. Therefore, occupational asbestos fiber exposure might be associated with gastric cancer in this case.
Citations
This study investigated the distribution of causative agents related to occupational lung cancer, their relationships with work, and associations between work-relatedness and the histologic type of lung cancer.
We used data from the occupational surveillance system in Korea in 2013. In addition, data from 1,404 participants diagnosed with lung cancer were collected through interviews. We included the patients’ longest-held job in the analysis. Work-relatedness was categorized as “definite,” “probable,” “possible,” “suspicious,” “none,” or “undetermined.”
Among the subjects, 69.3% were men and 30.7% were women. Regarding smoking status, current smokers were the most prevalent (35.5%), followed by non-smokers (32.3%), ex-smokers (32.2%). Regarding the causative agents of lung cancer, asbestos (1.0%) and crystalline silica (0.9%) were the most common in definite work-related cases, while non-arsenical insecticide (2.8%) was the most common in probable cases followed by diesel engine exhaust (1.9%) and asbestos (1.0%). Regarding histologic type, adenocarcinoma was the most common (41.7%), followed by squamous cell carcinoma (21.2%). Among current smokers, squamous cell carcinoma was the most common among definite and probable cases (13.4%), while non-small cell lung cancer was the least common (7.1%). Among non-smokers, squamous cell carcinoma was the most common (21.4%), while the least common was adenocarcinoma (1.6%).
Approximately, 9.5% of all lung cancer cases in Korea are occupational-related lung cancer. Well-known substances associated with lung cancer, such as crystalline silica, asbestos, and diesel engine exhaust, are of particular concern. However, the histologic types of lung cancer related to smoking were inconsistent with previous studies when work-relatedness was taken into account. Future studies are required to clarify the incidence of occupational lung cancer in agricultural workers exposed to non-arsenical insecticides and the associations between work-relatedness and the histologic type of lung cancer.
Citations
Trichloroethylene (TCE) has been widely used as a degreasing agent in many manufacturing industries. Recently, the International Agency for Research on Cancer presented “sufficient evidence” for the causal relationship between TCE and kidney cancer. The aim of this study was to review the epidemiologic evidences regarding the relationship between TCE exposure and kidney cancer in Korean work environments. The results from the cohort studies were inconsistent, but according to the meta-analysis and case–control studies, an increased risk for kidney cancer was present in the exposure group and the dose–response relationship could be identified using various measures of exposure. In Korea, TCE is a commonly used chemical for cleaning or degreasing processes by various manufacturers; average exposure levels of TCE vary widely. When occupational physicians evaluate work-relatedness kidney cancers, they must consider past exposure levels, which could be very high (>100 ppm in some cases) and associated with jobs, such as plating, cleaning, or degreasing. The exposure levels at a manual job could be higher than an automated job. The peak level of TCE could also be considered an important exposure-related variable due to the possibility of carcinogenesis associated with high TCE doses. This review could be a comprehensive reference for assessing work-related TCE exposure and kidney cancer in Korea.
Citations
Iron and steel foundry workers are exposed to various toxic and carcinogenic substances including crystalline silica, polycyclic aromatic hydrocarbons, and arsenic. Studies have been conducted on lung cancer in iron and steel founding workers and the concentration of crystalline silica in foundries; however, the concentration of crystalline silica and cases of lung cancer in a single foundry has never been reported in Korea. Therefore, the authors report two cases of lung cancer and concentration of crystalline silica by the X-ray diffraction method.
A 55-year-old blasting and grinding worker who worked in a foundry for 33 years was diagnosed with lung cancer. Another 64-year-old forklift driver who worked in foundries for 39 years was also diagnosed with lung cancer. Shot blast operatives were exposed to the highest level of respirable quartz (0.412 mg/m3), and a forklift driver was exposed to 0.223 mg/m3.
The lung cancer of the two workers is very likely due to occupationally related exposure given their occupational history, the level of exposure to crystalline silica, and epidemiologic evidence. Further studies on the concentration of crystalline silica in foundries and techniques to reduce the crystalline silica concentration are required.
Citations