Warning: mkdir(): Permission denied in /home/virtual/lib/view_data.php on line 81

Warning: fopen(upload/ip_log/ip_log_2024-11.txt): failed to open stream: No such file or directory in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Air pollution and urinary n-acetyl-B-glucosaminidase levels in residents living near a cement plant
Skip Navigation
Skip to contents

Ann Occup Environ Med : Annals of Occupational and Environmental Medicine

OPEN ACCESS
SEARCH
Search

Articles

Page Path
HOME > Ann Occup Environ Med > Volume 28; 2016 > Article
Research Article Air pollution and urinary n-acetyl-B-glucosaminidase levels in residents living near a cement plant
Min Soo Jung1, Jae Yoon Kim1, Hyun Seung Lee2, Chul Gab Lee1, Han Soo Song1orcid
Annals of Occupational and Environmental Medicine 2016;28:52.
DOI: https://doi.org/10.1186/s40557-016-0138-8
Published online: September 29, 2016

1Department of Occupational & Environmental Medicine, School of Medicine, Chosun University, 309 Pilmun-daero Dong-gu, Gwangju, 61452 South Korea

2Korea Medical Institute, 5-6, Sangmujungang-ro 78beon-gil, Seo-gu, Gwangju, 61949 South Korea

• Received: July 12, 2016   • Accepted: September 20, 2016

© The Author(s). 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

  • 183 Views
  • 1 Download
  • 6 Web of Science
  • 7 Crossref
  • 9 Scopus
prev next
  • Background
    To identify adverse renal effects due to air pollution derived from a cement plant in Korea. Urinary n-acetyl-B-glucosaminidase (U-NAG) levels in residents living near a cement plant were compared to those in a group who lived farther away from the plant.
  • Methods
    From June to August 2013 and from August to November 2014, laboratory tests for U-NAG and heavy metal were conducted on 547 study participants. Based on the level of air pollution exposure, subjects were divided into the “less exposed group,” (LEG) which consisted of 66 persons who lived more than 5 km away from the cement plant, the “more exposed group from the rural area” (MEG-R), which consisted of 272 persons, and the “more exposed group from downtown area” (MEG-D), which consisted of 209 persons who lived within a 1 km radius of the cement plant. U-NAG levels >5.67 U/L were defined as “higher U-NAG” levels. We compared the prevalence of higher U-NAG levels and estimated the adjusted odds ratio (OR) by air pollution exposure using a chi-square test and multiple logistic regression analysis. Further, we estimated the interaction between air pollution exposure and heavy metal exposure in renal toxicity.
  • Results
    The OR of higher U-NAG levels by MEG-D and MEG-R compared to LEG was 2.13 (95 % CI 0.86–4.96) and 4.79 (95 CI 1.65–10.01), respectively. Urinary cadmium (U-Cd), urinary mercury (U-Hg), age, occupation, hypertension, and diabetes had a significant association with higher U-NAG levels. However, blood lead (B-Pb), sex, and smoking were not associated with higher U-NAG. Especially, concurrent exposure to heavy metals (U-Hg or/and U-Cd) and air pollution had an additive adverse effect. In the group with both 4th quartile heavy metal exposure (U-Cd or/and U-Hg) and air pollution exposure, the OR in MEG-R and MEG-D was 6.49 (95 % 1.42–29.65) and 8.12 (95 % CI 1.74–37.92), respectively, after adjustment for age, occupation, hypertension, diabetes.
  • Conclusions
    U-NAG levels seem to be affected by air pollution exposure as well as age, hypertension, diabetes, and even low levels of cadmium and low levels of mercury. Moreover, concurrent exposure to heavy metals and air pollution can have additive cytotoxic renal effects.
Many studies definitively show that air pollution contributes to premature death [1, 2], cardiovascular disease [3, 4], and respiratory disease such as asthma and chronic obstructive pulmonary disease [3, 5, 6], based on both the short-term and long-term effects of exposure. Individuals for whom air pollution poses a particular health risk include fetuses, children, and older people, especially those in low-income societies or in a polluted environment [79].
Table 1
General characteristics of study population by air pollution
Variables Total LEG MEG-R MEG-D P-value
n % n % n % n %
Sex
 Male 203 37.1 19 28.8 105 38.6 79 37.8 0.323
 female 344 62.9 47 71.2 167 61.4 130 62.2
Age, years
 40–59 185 33.8 19 28.8 96 35.3 70 33.5 0.600
  ≥ 60 362 66.2 47 71.2 176 64.7 139 66.5
Occupation
 non-manual 370 67.6 28 42.4 162 59.6 180 86.1 <0.001
 manual 177 32.4 38 57.6 110 40.4 29 13.9
Smoking
 none 452 82.6 57 86.4 226 83.1 169 80.9 0.567
 current 95 17.4 9 13.6 46 16.9 40 19.1
HTN, mmHg
  < 140/90 410 75.0 50 75.8 208 76.5 152 72.7 0.635
  ≥ 140/90 137 25.0 16 24.2 64 23.5 57 27.3
HbA1c, %
  < 6.5 449 82.1 46 69.7 223 82.0 180 86.1 0.010
  ≥ 6.5 98 17.9 20 30.3 49 18.0 29 13.9
Total 547 100.0 66 100.0 272 100.0 209 100.0
p-value by Chi-square test; non-manual: office work; the unemployed; manual: farmer, labor, construction, blue collar job
LEG ‘less exposed group’ who lived 5 km or more away from the cement plant
MEG ‘more exposed group’ who lived within the 1 km radius of the cement plant
MEG-R MEG in rural area; MEG-D: MEG in downtown
Table 2
Geometric mean of U-NAG and prevalence of higher U-NAG by related factors
Variables U-NAG, U/L P* Higher U-NAG (≥5.67), U/L P**
GM GSD n %
Sex
 Male 1.90 1.49 0.004 35 17.2 0.752
 Female 2.51 1.79 63 18.3
Age, years
 40–59 1.71 1.05 0.000 22 11.9 0.009
  ≥ 60 2.62 1.80 76 21.0
Occupation
 non-manual 2.14 1.66 0.070 62 16.8 0.307
 manual 2.55 1.62 36 20.3
Air pollution exposure
 LEG 2.63 1.35 0.242 8 12.1 0.071
 MEG-R 2.12 1.45 43 15.8
 MEG-D 2.36 2.34 47 22.5
Smoking
 none 2.30 1.82 0.448 83 18.4 0.552
 current 2.10 1.65 15 15.8
HTN, mmHg
  < 140/90 2.17 1.59 0.101 66 16.1 0.055
  ≥ 140/90 2.57 2.48 32 23.4
DM, HbA1c (%)
  < 6.5 2.14 1.52 0.007 71 15.8 0.006
  ≥ 6.5 2.93 3.55 27 27.6
Urine cadmium, μg/g cr
 1Q (0.09–0.44) 1.93 0.90 0.007 17 12.6 0.145
 2Q (0.44–0.75) 1.99 1.69 24 17.4
 3Q (0.75–1.16) 2.40 2.38 25 18.2
 4Q (1.16–8.91) 2.84 2.43 32 23.4
Urine mercury, μg/g cr
 1Q (0.09–0.42) 1.96 1.05 0.020 19 14.1 0.023
 2Q (0.42–0.63) 1.98 1.33 19 13.8
 3Q (0.63–0.93) 2.56 1.50 24 17.5
 4Q (0.93–4.16) 2.65 3.48 36 26.3
Blood lead, μg/dL
 1Q (0.77–2.13) 2.33 1.66 0.941 25 18.8 0.830
 2Q (2.13–2.70) 2.31 1.74 27 19.3
 3Q (2.70–3.50) 2.17 1.91 25 18.2
 4Q (3.50–10.37) 2.26 1.72 21 15.3
Total 2.27 1.80 98 17.9
*p-value by independent t-test, ANOVA, calculated by logarithmically transforming variables
**p-value by Chi-square test
Table 3
OR of U-NAG by related factors and air pollution exposure
Variables Unadjusted Adjusted
OR 95 % CI OR 95 % CI
Sex
 male
 female 1.07 0.68 1.69 0.73 0.39 1.37
Age, year
 40–59
  ≥ 60 1.96 1.18 3.28 1.81 1.05 3.13
Occupation
 non-manual
 manual 1.26 0.80 2.00 1.78 1.03 3.07
Smoking
 none
 current 0.83 0.45 1.52 0.88 0.43 1.82
Air pollution exposure
 LEG
 MEG-R 1.36 0.60 3.05 2.07 0.86 4.96
 MEG-D 2.10 0.93 4.71 4.07 1.65 10.01
Hypertension, mmHg
  < 140/90
  ≥ 140/90 1.58 0.98 2.55 1.67 1.00 2.78
DM, HbA1c (%)
  < 6.5
  ≥ 6.5 2.02 1.21 3.37 2.51 1.43 4.40
Urine cadmium, μg/g cr
 1Q (0.09 ~ 0.44)
 2Q (0.44 ~ 0.75) 1.46 0.74 2.86 1.46 0.71 3.02
 3Q (0.75 ~ 1.16) 1.54 0.79 3.02 1.51 0.72 3.13
 4Q (1.16 ~ 8.91) 2.11 1.11 4.02 2.20 1.03 4.67
Urine mercury, μg/g cr
 1Q (0.09 ~ 0.42)
 2Q (0.42 ~ 0.63) 0.97 0.49 1.93 0.96 0.46 2.01
 3Q (0.63 ~ 0.93) 1.29 0.67 2.49 1.30 0.64 2.63
 4Q (0.93 ~ 4.16) 2.17 1.17 4.03 2.65 1.34 5.25
Blood lead, μg/dL
 1Q (0.77 ~ 2.13)
 2Q (2.13 ~ 2.70) 1.03 0.56 1.88 0.96 0.49 1.87
 3Q (2.70 ~ 3.50) 0.96 0.52 1.78 0.89 0.44 1.77
 4Q (3.50 ~ 10.37) 0.78 0.41 1.47 0.67 0.32 1.41
Logistic regression with adjusted for all variables; CI confidence interval
Table 4
OR of higher U-NAG by heavy metals and air pollution exposure
Variables Unadjusted Adjusteda
higher heavy metals Air pollution n OR 95 % CI OR 95 % CI
Model 1 None 320 1 1
U-Hg or U-Cd 180 1.79 1.11 2.87 2.03 1.22 3.36
U-Hg and U-Cd 47 2.66 1.32 5.36 3.32 1.55 7.11
Model 2 None LEG 36 1 1
MEG-R 153 1.98 0.43 9.05 2.13 0.45 9.95
MEG-D 131 4.21 0.94 18.66 4.79 1.05 21.80
U-Hg or/and U-Cd LEG 30 4.25 0.78 22.88 4.33 0.78 23.89
MEG-R 119 4.98 1.12 22.12 6.49 1.42 29.65
MEG-D 78 6.26 1.38 28.38 8.12 1.74 37.92
Model 1: Concurrent exposure of heavy metals; Model 2: Interaction between air pollution and heavy metal
Logistic regression method
aAdjusted by sex, age, HTN, DM
Airborne particulate matter (PM) as a main composition of air pollution has various cytotoxic effects according to source, physical properties, and chemical speciation [10]. PM could influence the activation of inflammatory cytokines, oxidative stress, and cytotoxic reaction by systemic absorption [11]. Therefore, it not only affects the direct contact site such as the respiratory system, but can also have other effects, such as on the cardiovascular system or the nervous system [1214], or on diabetes mellitus [15, 16].
The health effects of air pollution on cardiovascular diseases and respiratory disease have attained national and international attention, whereas the renal effects seem to be neglected. However, studies on the general health effects of air pollution indicate increased renal disease [17]. Diesel exhaust triggered renal toxicity in an animal experimental study. Thus we explored the relationship between air pollution and renal effects. There is some evidence that second-hand smoke causes adverse renal effects in children with chronic renal disease [18, 19]. Current cigarette smoking is a risk factor for chronic kidney disease [20]. A longitudinal analysis using a validated spatiotemporal model showed that long-term PM2.5 exposure negatively affects renal function [17]. However, little is known about the effects of air pollution on renal disease.
Major risk factors of chronic kidney disease are age, diabetes mellitus, and hypertension. However, unknown risk factors also play an important role. Lower level exposure to environmental nephrotoxicants, such as heavy metals, in the general population has been shown to have a significant adverse effect on kidney disease [2124]. Some articles show that environmental exposure to heavy metals is associated with a decreased glomerular flow rate (GFR) or high prevalence of chronic kidney disease [25, 26]. There are a few articles suggesting the probability of a relationship between chronic kidney disease and diesel engine exhaust [27], passive smoking, and fine particulate matter [27].
In 2013, the authors of the current study investigated the health effects of air pollution on a population living near a cement plant. In that study, we reported the effects on respiratory disease of cement air pollution [28, 29]. The aim of this article is to identify the relationship between chronic kidney disease and air pollution from a cement plant, using urinary n-acetyl-B-glucosaminidase (U-NAG) as a biomarker for damage to the renal proximal convoluted tubule [30].
Participants
The participants in this study were local residents who took part in “The survey of health effects for residents around a cement plant and mines in Jangseong-gun” conducted in 2013 [29]. From June to September 2013, this epidemiological study, which was requested by the National Institute of Environmental Research, was conducted to evaluate the long term health effects of particulate dust exposure on residents who lived near a cement plant located in Jangseong-gun, South Korea. To investigate the impact of air pollution, the residents who lived within a 1 km radius of the cement plant were designated as the “more exposed group” (MEG), and those who lived more than 5 km away from the cement plant were assigned to the “less exposed group” (LEG). The LEG served as a control group [29]. Further, we divided MEG into “more exposed group in rural area” (MEG-R) and “more exposed group in downtown area” (MEG-D), because of differences by demographic configuration. According to a 2013 air pollution measurement, the average PM10 concentration was 38.52 microgram per cubic meter (μg/m3) in the LEG area and 43.27 ~ 45.53 μg/m3 in the MEG area. Average PM2.5 concentration in the atmosphere was 19.34 μg/m3 in the LEG area and 24.44 ~ 25.48 μg/m3 in the MEG area. There was a significant difference (both PM10 and PM2.5) between MEG-R and MEG-D. Average cadmium concentration in the atmosphere was 1.2 ng/m3 in the LEG area and 1.4 ~ 1.6 ng/m3 in the MEG area. Average lead concentration in the atmosphere was 21.7 ng/m3 in the LEG area and 38.6 ~ 47.4 ng/m3 in the MEG area. Average SiO2concentration in the atmosphere was 0.384 μg/m3 in the LEG area and 0.445 ~ 0.739 ng/m3 in the MEG area. A stratified sampling method was used to select 600 samples out of 1375 residents over age 40 who lived around the cement plant. These individuals were stratified according to sex, age, and residential area. In the current study, to evaluate the health effects of heavy metals, laboratory tests for determining urinary n-acetyl-B-glucosaminidase (U-NAG) and heavy metal were conducted. After the purpose, content, and a detailed plan of the sample survey was explained to the subjects, those who gave consent participated in the procedure. The final sample size was 547 individuals: 66 from LEG, 272 from MEG-R, and 209 from MEG-D. The Institutional Review Board (IRB) of the National Institute of Environmental Research provided ethical approval for the study.
Laboratory analysis methods
Subjects were interviewed by a clinician prior to the test, and each subject’s information such as age, area of residence, current job, and smoking habits were obtained through a questionnaire. Blood tests and urine tests were performed and analyzed to determine levels of blood lead (B-Pb), urinary cadmium (U-Cd), urinary mercury (U-Hg), hemoglobin A1c (HbA1c), and U-NAG. An EDTA tube was used to collect 3 ml of whole blood, which was mixed by roller mixer to analyze B-Pb. Spot urine was collected and moved into each polypropylene tube and mixed by roller mixer in about 20 min to analyze U-Cd and U-Hg. Urine samples for elemental analysis were stored at below 4 °C (−8 ~ 2 °C) until analysis. B-Pb was measured by autosampler (Varian atomic absorption spectrophotometer, Varian SpectrAA-880U) using the flameless method and analyzed by Varian SpectrAA-880U. Urinary Hg was measured by automatic mercury analyzer (SP-3DS, NIC) using the gold-amalgam method. U-Cd levels were measured by the autosampler and Atomic absorption spectrophotometer, Perkin-Elmer Model AAnalyst 600 Zeeman Correction using the flameless method. U-NAG levels were measured by colorimetry (kit from Shionogi, Japan). U-NAG levels were adjusted with creatinine into U-NAG/Cr (U/g cr). To evaluate the reliability of the laboratory test for heavy metals, we requested results from two laboratory institutions. The intraclass correlation coefficient (ICC) was analyzed for 10.6 % (58 cases) of the total samples. ICC of B-Pb, U-Cd, and U-Hg were 0.923, 0.841, and 0.874, respectively.
Variables

Independent variables

Factors related to general characteristics (e.g., sex, age, occupation, smoking, hypertension, diabetes mellitus) were classified as independent variables. Age was divided into the following groups: 40–59 and ≥60 years. Occupation was categorized into the following groups: non-manual work and manual work (e.g., farmer, labor, construction, blue collar job). Based on the smoking status, subjects were classified as follows: non-smokers and current smokers. With respect to hypertension (HTN), subjects were divided into the following groups by measuring BP 2times: those with BP < 140/90 mmHg and those with BP ≥ 140/90 mmHg. With respect to diabetes mellitus (DM), subjects were divided into the following groups by measuring HbA1c levels: subjects with HbA1c <6.5 % and subjects with HbA1c ≥ 6.5 %. Air pollution exposure was categorized into the following groups: “less exposed group” (LEG), “more exposed group in rural area” (MEG-R), and “more exposed group in downtown area” (MEG-D). Heavy metal (B-Pb, U-Cd, U-Hg) were categorized into quartiles: 1st quartile, 2nd quartile, 3rd quartile, and 4th quartile.

Dependent variables

U-NAG was adjusted with creatinine into U-NAG/Cr (U/L). Higher U-NAG was defined as above 5.67 U/L, corresponding to 1 standard deviation on the basis of the standard values measured at analyzing institutions.
Statistical analysis
The chi-square test was used to examine the relationship between higher U-NAG and sex, age, occupation, smoking, hypertension, and diabetes. U-NAG concentrations (the geometric mean and geometric standard deviation) were calculated by each variable. Unadjusted OR values were obtained using univariate logistic regression analysis to examine the correlation between higher U-NAG and each variable. Additionally, multivariate logistic regression analysis was carried out to adjust for all variables. Multivariate logistic regression analysis was conducted to examine the interaction between heavy metal and air pollution exposure after adjustment for sex, age, hypertension, and diabetes. Statistical significance was set to p < 0.05. All analyses were performed using SPSS v 21.0 (SPSS Inc., Chicago, IL, USA).
General characteristics of the participants
The number of participants was 547. Mean age was 64.32(±11.02) years old. Among all participants, 37.1 % were male and 62.9 % were female. A total of 66.2 % were aged 60 or over. Of the LEG, 71.2 % were female, which was higher than the proportion of female subjects in MEG-R and MEG-D (61.4 and 62.2 %, respectively). This was not a significant difference. Of the LEG, 71.2 % were aged 60 or older, which was higher than the proportion in MEG-R and MEG-D (64.7 and 66.5 %, respectively). This was not a significant difference. Of the MEG-D, 19.1 % fell into the smoker category. This was higher than the proportions in MEG-R and LEG, which were 16.9 and 13.6 %, respectively. This was not a significant difference. Of the LEG, 30.3 % had diabetes, which was higher than the proportions in MEG-R and MEG-D, which were 18.0 and 13.9 %, respectively. As previously noted, LEG was older than MEG-R and MEG-D, and the percentage of women was higher in LEG than in MEG-R and MEG-D. The percentage of manual work was higher in LEG (57.6 %) than in MEG-R (40.4 %) and MEG-D (13.9 %) (Table 1).
Prevalence of higher U-NAG by general characteristics and air pollution exposure
We calculated the geometric mean (GM) and geometric standard deviation (GSD) of U-NAG concentrations by each variable. GM and GSD of U-NAG concentrations from all participants were 2.27 U/L and 1.80 U/L, respectively. The percentage of “higher U-NAG” was 17.9 % (98 individuals). Sex, age, HbA1c, and U-Hg variables showed statistically significant differences in the geometric mean, or higher U-NAG. The GM of male and female U-NAG was 1.90 U/L (GSD 1.49) and 2.51 U/L (GSD 1.79), respectively. The ratio of higher U-NAG for the male category was 17.2 % and the ratio of higher U-NAG for the female category was 18.3 %. The GM of U-NAG of age younger than 60 was 1.71 U/L (GSD 1.05) and of age 60 or over was 2.62 U/L (GSD 1.80). This was a significant difference (p < 0.001). The ratio of higher U-NAG for people younger than 60 years old was 11.9 % and the ratio of higher U-NAG for people age 60 or older was 21.0 %. This was a significant difference (p = 0.009). The GM of U-NAG from non-DM was 2.14 U/L (GSD 1.52) and from DM was 2.93 U/L (GSD 3.55). This was a significant difference (p = 0.007). The ratio of higher U-NAG for non-DM was 15.8 % and the ratio of higher U-NAG for DM was 27.6 %. This was a significant difference. (p = 0.006). For U-Hg, as the quartile increased, the GM of U-NAG tended to increase. This was a significant difference (p = 0.020). For U-Hg, as the quartile increased, the ratio of higher U-NAG tended to increase. This was a significant difference. (p = 0.023) (Table 2).
Higher U-NAG Related factors by multiple logistic regression analysis
Multivariate logistic regression analysis was conducted to examine the interaction between U-NAG and the variables. The OR values for each variable were adjusted for all variables. After variables were adjusted, age, occupation, air pollution, hypertension, diabetes, U-Cd, and U-Hg were found to have significant OR values. Sex, smoking, and B-Pb did not show significant OR values. The adjusted OR of the higher U-NAG in the old age group (≥60) was 1.81 (95 % CI 1.05 ~ 3.13) compared to the younger age group. The adjusted OR of the higher U-NAG in the manual work group was 1.78 (95 % CI 1.03 ~ 3.07) compared to the non-manual work group. The adjusted OR of the higher U-NAG in the MEG-R and MEG-D were 2.07 (95 % CI 0.86 ~ 4.96) and 4.07 (95 % CI 1.65 ~ 10.01), respectively compared to the LEG. The OR of the higher U-NAG in the HTN group was 1.67 (95 % CI 1.00 ~ 2.74) compared to the non-HTN group. The OR of the higher U-NAG in the DM group was 2.51 (95 % CI 1.43 ~ 4.40) compared to the non-DM group. The OR value increased as the quartile of U-Cd and U-Hg increased. As the concentration of U-Cd increased (2nd, 3rd, and 4thquartile), the OR value showed an increase: 1.46 (95 % CI 0.46 ~ 2.01), 1.51 (95 % CI 0.72 ~ 3.13), and 2.20 (95 % CI 1.03 ~ 4.67), respectively. As the concentration of U-Hg increased (2nd, 3rd, and 4thquartile), the OR value showed an increase: 0.96 (95 % CI 0.46 ~ 2.01), 1.30 (95 % CI 0.64 ~ 2.63), and 2.65 (95 % CI 1.34 ~ 5.25), respectively. In contrast, B-Pb did not show a significant association with higher U-NAG. (Table 3)
OR of higher NAG by heavy metals and air pollution exposure
We performed a multiple logistic regression to evaluate the interaction between exposure to air pollution and heavy metals. We started by analyzing the effects of higher heavy metal levels, except for B-Pb, because B-Pb was not significantly associated with higher NAG.
The OR of U-NAG in the group with single exposure to higher heavy metal (U-Cd or U-Hg) and in the group with simultaneous exposure to higher heavy metals (U-Cd and U-Hg) were 2.03 (95 % CI 1.22 ~ 3.36) and 3.32 (95 % CI 1.55 ~ 7.11), respectively, compared to the group without heavy metals exposure (neither U-Cd nor U-Hg). Next, we stratified the analysis according to heavy metals exposure (U-Cd, U-Hg). In the group without heavy metals exposure (neither U-Cd nor U-Hg), the OR of MEG-R and MEG-D was 2.13 (95 % CI 0.45 ~ 9.95) and 4.79 (95 % CI 1.05 ~ 21.80), respectively, after adjustment. In the group with heavy metals exposure (U-Cd or/and U-Hg), the OR of the LEG, MEG-R, and MEG-D was 4.33 (95 % CI 0.78 ~ 23.89), 6.49 (95 % CI 1.42 ~ 29.65), and 8.12 (95 % CI 1.74 ~ 37.92), respectively, after adjustment by sex, age, HTN, and DM (Table 4).
Our study demonstrated the association between air pollution and urinary N-acetyl-beta-glucosaminidase (U-NAG). We used U-NAG as a biomarker for renal toxic damage in this research. U-NAG is a hydrolytic lysosomal enzyme in the proximal convoluted tubule [30]. U-NAG cannot pass through glomerular baseline membrane because it has 140,000 Dalton molecular weight. Thus U-NAG indicates proximal tubular damage at the cellular level. U-NAG level was significantly higher in patients with diabetes mellitus, microalbuminemic patients, and pregnant women with hypertensive disorders, compared to healthy controls [31]. In a study about biomarkers for renal dysfunction in type 2 Diabetes mellitus, U-NAG was the most sensitive marker of microalbuminuria and early renal damage, with sensitivity of 83.3 % compared to serum cystatin C, 2 renal tubular enzymes and neutrophil gelatinase associated lipocalin (NGAL), and β2-microglobulin (β2M) [32] [31]. U-NAG is a non-invasive and useful method of assessing renal tubular damage by environmental toxins [30].
We categorized heavy metal exposure (B-Pb, U-Cd, U-Hg) into quartiles: 1st quartile, 2nd quartile, 3rd quartile, and 4th quartile for estimating the dose-response relationship in order to analyze the relationship between U-NAG and heavy metal exposure. We found that the measured value of heavy metals did not correlate with the level of air pollution. Environmental exposure sources of heavy metals may be food, water, cigarettes, vehicles, incineration plant, hazardous waste landfill, and mines, as well as cement plant. We found a relationship between U-NAG and U-Hg and U-Cd in lower level exposure (above about 1 μg/g cr). According to studies using the Korean Nation Health and Nutrition Examination Survey (KNHANES), U-Hg and U-Cd were associated with decreased glomerular flow rate (GFR), despite low dose environmental exposure [24, 25, 32]. The result of our study also show a correlation between U-Hg and U-Cd and higher U-NAG. However, there was no correlation between B-Pb and higher U-NAG in our study. The relationship between blood lead levels and renal dysfunction at low-level environmental exposure in the general population is controversial.
Multiple exposure to higher heavy metal levels have high U-NAG compared to single exposure. Heavy metals may have an additive effect in renal toxicity. In previously published experimental studies in mice, concurrent exposure to arsenic and cadmium had more toxic renal effects than did single exposure [33, 34]. In a recent study, simultaneous exposure to cadmium and lead induced a reduction in GFR [25].
Diabetes and hypertension are major risk factors for chronic renal disease [35]. Diabetic glomerular sclerosis or hypertensive glomerular sclerosis induced slowly worsening albuminuria, hypertension, gradual decline of GFR, and nephrotic syndrome. Our results suggest that hypertension and diabetes were significantly related to higher U-NAG. The adjusted OR of higher U-NAG in hypertension was 1.67. The adjusted OR of higher U-NAG in diabetes is 2.51.
Air pollution exposure was divided into a higher exposure group in a rural area (MEG-R), a higher exposure group in a downtown area (MEG-D), and a lower exposure group (LEG). The adjusted OR of higher U-NAG in MEG-R and MEG-D compared to LEG was 2.07 and 4.07, respectively, in spite of the younger age population in MEG-D. We do not fully understand why the OR of higher U-NAG is large in MEG-D compared to that of MEG-R. We assumed it was because of wind direction, population density, and traffic exhaust.
In the group without heavy metal exposure, OR of higher U-NAG in MEG-R and MEG-D as compared to LEG was 2.13 and 4.79, respectively. Whereas in the group with heavy metal exposure (U-Cd or/and U-Hg), the OR of higher U-NAG in MEG-R and MEG-D compared with LEG was 6.49 and 8.12, respectively. This result suggests concurrent exposure to heavy metals and air pollution has additive toxic renal effects. Further, we assumed that the populations having higher heavy metal exposure have increased risk if they live in a high air pollution area.
We found an incomprehensible result, in that smoking was not correlated with U-NAG. In previous studies, smoking alters the proximal tubular function and leads to increased U-NAG by impairment of organic cation transport [36, 37]. Generally, smoking results in a higher concentration of toxins than does usual air pollution. Thus, no-correlation between smoking and U-NAG was not predicted. Further studies are needed to reveal additional information about smoking and U-NAG. The OR of U-NAG for manual work was high compared to that of non-manual work. We understood that manual work provides more opportunity for exposure than other causes during work. U-NAG as a nephrotoxic biomarker represents more recent damage than GFR. The GFR represent the cumulative effect of kidney damage by several risk factors such as diabetes, hypertension, glomerulonephritis, and many nephrotoxins [38].
The limitations of this study should be considered. First of all, the study design was cross sectional. It was insufficient to determine if there was a causal relationship. In the past, there was severe air pollution in the research region. However, an industrial dust collecting system was installed 20 years ago. After that, air pollution was greatly reduced. Nevertheless, the region around the cement plant has poor air quality because of cement dust from the plant and limestone dust from the strip mine. Accordingly, the results of this study might reflect cumulative air pollution exposure. On the other hand, we had to consider the underestimation effect due to early death and migration to other regions. Second, the lower level exposure group did not live in perfectly good air quality conditions. However, the people included in LEG lived 5 km from the cement plant and on higher ground surrounded by mountains. The result of PM10 and PM2.5 measured during 3 different seasons showed better air quality results than in the higher exposure area. Third, higher U-NAG does not directly mean chronic renal disease; it just indicates renal proximal tubular damage at that time. The results of our research merely suggest that air pollution can induce renal disease. The obvious conclusion is that further prospective study is needed to assess chronic renal disease or end stage renal disease, and mortality due to renal disease.
The main strength of this study is the evaluation of the relationship between air pollution and renal toxicity. We presented adjusted ORs by major risk factors for chronic renal disease, including diabetes, hypertension, smoking, and occupation. Further, we showed the result of a stratified analysis by heavy metals exposure and dose-response relationship.
We presented the relationship between air pollution and higher U-NAG as a renal proximal tubular oxidative stress marker, through research conducted on residents living around a cement plant. The results were adjusted by major risk factors for chronic renal disease, including diabetes, hypertension, smoking, occupation, and heavy metals exposure. Especially, heavy metals exposure may have a synergic effect with air pollution in renal toxicity. Further study about the additional adverse effects of air pollution as a risk factor for kidney disease is needed.
This study was supported by National Institute of Environmental Research of Korea and Jangseong-gun.
Funding
National Institute of environmental Research of Korea and Jangseong-gun.
Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
Authors’ contributions
Min-Soo Jung, Jae-Yoon Kim, Hyun-Seung Lee, Chul-Gab Lee, Han-Soo Song. MSJ drafted this manuscript. HSS designed this epidemiological survey and corrected final manuscript as corresponding author. JYK, HSL conducted the survey and contributed to the data collection. CGL revised this manuscript critically and contributed to the design this study. All Authors read and approved the final manuscript.
Competing interests
The authors declare that they have no competing interests.
Consent for publication
Not applicable.
Ethics approval and consent to participate
The Institutional Review Board (IRB) of the National Institute of Environmental Research provided ethical approval for the study.

B-Pb

Blood lead

DM

Diabetes mellitus

GFR

Glomerular flow rate

GM

Geometric mean

GSD

Geometric standard deviation

HbA1c

Hemoglobin A1c

HTN

Hypertension

LEG

Less exposed group

MEG-D

More exposed group from downtown area

MEG-R

More exposed group from the rural area

OR

Odds ratio

PM

Particulate matter

U-Cd

Urinary cadmium

U-Hg

Urinary mercury

U-NAG

Urinary n-acetyl-B-glucosaminidase
  • 1. Ha S, Hu H, Roussos-Ross D, Haidong K, Roth J, Xu X. The effects of air pollution on adverse birth outcomes. Environ Res 2014;134:198–204. 10.1016/j.envres.2014.08.002. 25173052.ArticlePubMedPMC
  • 2. Lelieveld J, Evans J, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015;525(7569):367–371. 10.1038/nature15371. 26381985.ArticlePubMedPDF
  • 3. Anderson JO, Thundiyil JG, Stolbach A. Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 2012;8(2):166–175. 10.1007/s13181-011-0203-1. 22194192.ArticlePubMedPMCPDF
  • 4. Du Y, Xu X, Chu M, Guo Y, Wang J. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis 2016;8(1):E8–E19. 26904258.PubMedPMC
  • 5. Kurt OK, Zhang J, Pinkerton KE. Pulmonary health effects of air pollution. Curr Opin Pulm Med 2016;22(2):138–143. 10.1097/MCP.0000000000000248. 26761628.ArticlePubMedPMC
  • 6.
  • 7. Cureton S. Environmental victims: environmental injustice issues that threaten the health of children living in poverty. Rev Environ Health 2011;26(3):141–147. 10.1515/reveh.2011.021. 22206190.ArticlePubMed
  • 8. Zeng Y, Gu D, Purser J, Hoenig H, Christakis N. Associations of environmental factors with elderly health and mortality in China. Am J Public Health 2010;100(2):298–305. 10.2105/AJPH.2008.154971. 20019314.ArticlePubMedPMC
  • 9. Al-Gubory KH. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reprod Biomed Online 2014;29(1):17–31. 10.1016/j.rbmo.2014.03.002. 24813750.ArticlePubMed
  • 10. Thomson EM, Breznan D, Karthikeyan S, MacKinnon-Roy C, Charland J-P, Dabek-Zlotorzynska E, Celo V, Kumarathasan P, Brook JR, Vincent R. Cytotoxic and inflammatory potential of size-fractionated particulate matter collected repeatedly within a small urban area. Part Fibre Toxicol 2015;12:24. 10.1186/s12989-015-0099-z. 26178321.ArticlePubMedPMCPDF
  • 11.
  • 12.
  • 13.
  • 14. Block ML, Calderón-Garcidueñas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 2009;32(9):506–516. 10.1016/j.tins.2009.05.009. 19716187.ArticlePubMedPMC
  • 15. Eze IC, Hemkens LG, Bucher HC, Hoffmann B, Schindler C, Künzli N, Schikowski T, Probst-Hensch NM. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environ Health Perspect 2015;123(5):381–389. 25625876.ArticlePubMedPMC
  • 16. Park SK, Adar SD, O’Neill MS, Auchincloss AH, Szpiro A, Bertoni AG, Navas-Acien A, Kaufman JD, Diez-Roux AV. Long-term exposure to air pollution and type 2 diabetes mellitus in a multiethnic cohort. Am J Epidemiol 2015;181(5):327–336. 10.1093/aje/kwu280. 25693777.ArticlePubMedPMC
  • 17.
  • 18. Omoloja A, Tyc VL. Tobacco and the pediatric chronic kidney disease population. Pediatr Nephrol 2015;30(2):235–243. 10.1007/s00467-014-2804-9. 24890336.ArticlePubMedPDF
  • 19. Omoloja A, Jerry-Fluker J, Ng DK, Abraham AG, Furth S, Warady BA, Mitsnefes M. Secondhand smoke exposure is associated with proteinuria in children with chronic kidney disease. Pediatr Nephrol 2013;28(8):1243–1251. 10.1007/s00467-013-2456-1. 23584848.ArticlePubMedPMCPDF
  • 20. Jones-Burton C, Seliger SL, Scherer RW, Mishra SI, Vessal G, Brown J, Weir MR, Fink JC. Cigarette smoking and incident chronic kidney disease: a systematic review. Am J Nephrol 2007;27(4):342–351. 10.1159/000103382. 17541263.ArticlePubMedPDF
  • 21. Kim NH, Hyun YY, Lee K-B, Chang Y, Rhu S, Oh K-H, Ahn C. Environmental heavy metal exposure and chronic kidney disease in the general population. J Korean Med Sci 2015;30(3):272–277. 10.3346/jkms.2015.30.3.272. 25729249.ArticlePubMedPMCPDF
  • 22. Sommar JN, Svensson MK, Björ BM, Elmståhl SI, Hallmans G, Lundh T, Schön SM, Skerfving S, Bergdahl IA. End-stage renal disease and low level exposure to lead, cadmium and mercury; a population-based, prospective nested case-referent study in Sweden. Environ Health 2013;12:9. 10.1186/1476-069X-12-9. 23343055.ArticlePubMedPMCPDF
  • 23. Navas-Acien A, Tellez-Plaza M, Guallar E, Muntner P, Silbergeld E, Jaar B, Weaver V. Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis. Am J Epidemiol 2009;170(9):1156–1164. 10.1093/aje/kwp248. 19700501.ArticlePubMedPMC
  • 24. Myong J-P, Kim H-R, Baker D, Choi B. Blood cadmium and moderate-to-severe glomerular dysfunction in Korean adults: analysis of KNHANES 2005–2008 data. Int Arch Occup Environ Health 2012;85(8):885–893. 10.1007/s00420-012-0737-9. 22252222.ArticlePubMedPDF
  • 25. Chung S, Chung JH, Kim SJ, Koh ES, Yoon HE, Park CW, Chang YS, Shin SJ. Blood lead and cadmium levels and renal function in Korean adults. Clin Exp Nephrol 2014;18(5):726–734. 10.1007/s10157-013-0913-6. 24276216.ArticlePubMedPDF
  • 26. Kim Y, Lee B-K. Associations of blood lead, cadmium, and mercury with estimated glomerular filtration rate in the Korean general population: analysis of 2008–2010 Korean national health and nutrition examination survey data. Environ Res 2012;118:124–129. 10.1016/j.envres.2012.06.003. 22749111.ArticlePubMed
  • 27.
  • 28. Lee HS, Lee CG, Kim DH, Song HS, Jung MS, Kim JY, Park CH, Ahn SC, Do YS. Emphysema prevalence related air pollution caused by a cement plant. Ann Occup Environ Med 2016;28:17. 10.1186/s40557-016-0101-8. 27057315.ArticlePubMedPMC
  • 29. Kim SH, Lee CG, Song HS, Lee HS, Jung MS, Kim JY, Park CH, Ahn SC, Do YS. Ventilation impairment of residents around a cement plant. Ann Occup Environ Med 2015;27:3. 10.1186/s40557-014-0048-6. 25713724.ArticlePubMedPMCPDF
  • 30. Moriguchi J, Inoue Y, Kamiyama S, Horiguchi M, Murata K, Sakuragi S, Fukui Y, Ohashi F, Ikeda M. N-Acetyl-β-d-glucosaminidase (NAG) as the most sensitive marker of tubular dysfunction for monitoring residents in non-polluted areas. Toxicol Lett 2009;190(1):1–8. 10.1016/j.toxlet.2009.05.009. 19467302.ArticlePubMed
  • 31. Assal HS, Tawfeek S, Rasheed EA, El-Lebedy D, Thabet EH. Serum cystatin C and tubular urinary enzymes as biomarkers of renal dysfunction in type 2 diabetes mellitus. Clin Med Insights Endocrinol Diabetes 2013;6:7–13. 23966807.ArticlePubMedPMCPDF
  • 32. Lee BK, Kim Y. Association of blood cadmium with hypertension in the Korean general population: analysis of the 2008–2010 Korean national health and nutrition examination survey data. Am J Ind Med 2012;55(11):1060–1067. 10.1002/ajim.22078. 22692952.ArticlePubMed
  • 33. Mahaffey KR, Fowler BA. Effects of concurrent administration of lead, cadmium, and arsenic in the rat. Environ Health Perspect 1977;19:165–171. 10.1289/ehp.7719165. 198203.ArticlePubMedPMC
  • 34. Liu J, Liu Y, Habeebu SM, Waalkes MP, Klaassen CD. Chronic combined exposure to cadmium and arsenic exacerbates nephrotoxicity, particularly in metallothionein-I/II null mice. Toxicology 2000;147(3):157–166. 10.1016/S0300-483X(00)00194-3. 10924798.ArticlePubMed
  • 35. Levey AS, Coresh J. Chronic kidney disease. Lancet 2012;379(9811):165–180. 10.1016/S0140-6736(11)60178-5. 21840587.ArticlePubMed
  • 36. El-Safty IA, Afifi AM, Shouman AE, El-Sady AK. Effects of smoking and lead exposure on proximal tubular integrity among Egyptian industrial workers. Arch Med Res 2004;35(1):59–65. 10.1016/j.arcmed.2003.08.009. 15036802.ArticlePubMed
  • 37. Yacoub R, Habib H, Lahdo A, Al Ali R, Varjabedian L, Atalla G, Akl NK, Aldakheel S, Alahdab S, Albitar S. Association between smoking and chronic kidney disease: a case control study. BMC Public Health 2010;10:731. 10.1186/1471-2458-10-731. 21108832.ArticlePubMedPMCPDF
  • 38.

Figure & Data

REFERENCES

    Citations

    Citations to this article as recorded by  
    • Mechanisms of microbial resistance against cadmium – a review
      Monu Sharma, Sonu Sharma, Paavan, Mahiti Gupta, Soniya Goyal, Daizee Talukder, Mohd. Sayeed Akhtar, Raman Kumar, Ahmad Umar, Abdulrab Ahmed M. Alkhanjaf, Sotirios Baskoutas
      Journal of Environmental Health Science and Engineering.2023; 22(1): 13.     CrossRef
    • The Validity of Benchmark Dose Limit Analysis for Estimating Permissible Accumulation of Cadmium
      Soisungwan Satarug, David A. Vesey, Glenda C. Gobe, Aleksandra Đorđević
      International Journal of Environmental Research and Public Health.2022; 19(23): 15697.     CrossRef
    • Mitigation of Cadmium Toxicity through Modulation of the Frontline Cellular Stress Response
      Soisungwan Satarug, David A. Vesey, Glenda C. Gobe
      Stresses.2022; 2(3): 355.     CrossRef
    • Evidence for Ovarian and Testicular Toxicities of Cadmium and Detoxification by Natural Substances
      Martin Massányi, Soisungwan Satarug, Roberto Madeddu, Robert Stawarz, Peter Massányi
      Stresses.2021; 2(1): 1.     CrossRef
    • Particulate matter pollution and hospital outpatient visits for endocrine, digestive, urological, and dermatological diseases in Nanjing, China
      Ce Wang, Guangcan Zhu, Lei Zhang, Kai Chen
      Environmental Pollution.2020; 261: 114205.     CrossRef
    • Cadmium and Lead Exposure, Nephrotoxicity, and Mortality
      Soisungwan Satarug, Glenda C. Gobe, David A. Vesey, Kenneth R. Phelps
      Toxics.2020; 8(4): 86.     CrossRef
    • Cement plant emissions and health effects in the general population: a systematic review
      Elena Raffetti, Michele Treccani, Francesco Donato
      Chemosphere.2019; 218: 211.     CrossRef

    • PubReader PubReader
    • ePub LinkePub Link
    • Cite
      CITE
      export Copy Download
      Close
      Download Citation
      Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

      Format:
      • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
      • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
      Include:
      • Citation for the content below
      Air pollution and urinary n-acetyl-B-glucosaminidase levels in residents living near a cement plant
      Ann Occup Environ Med. 2016;28:52  Published online September 29, 2016
      Close
    • XML DownloadXML Download
    Air pollution and urinary n-acetyl-B-glucosaminidase levels in residents living near a cement plant
    Air pollution and urinary n-acetyl-B-glucosaminidase levels in residents living near a cement plant
    VariablesTotalLEGMEG-RMEG-D P-value
    n % n % n % n %
    Sex
     Male20337.11928.810538.67937.80.323
     female34462.94771.216761.413062.2
    Age, years
     40–5918533.81928.89635.37033.50.600
      ≥ 6036266.24771.217664.713966.5
    Occupation
     non-manual37067.62842.416259.618086.1<0.001
     manual17732.43857.611040.42913.9
    Smoking
     none45282.65786.422683.116980.90.567
     current9517.4913.64616.94019.1
    HTN, mmHg
      < 140/9041075.05075.820876.515272.70.635
      ≥ 140/9013725.01624.26423.55727.3
    HbA1c, %
      < 6.544982.14669.722382.018086.10.010
      ≥ 6.59817.92030.34918.02913.9
    Total547100.066100.0272100.0209100.0
    VariablesU-NAG, U/L P*Higher U-NAG (≥5.67), U/L P**
    GMGSD n %
    Sex
     Male1.901.490.0043517.20.752
     Female2.511.796318.3
    Age, years
     40–591.711.050.0002211.90.009
      ≥ 602.621.807621.0
    Occupation
     non-manual2.141.660.0706216.80.307
     manual2.551.623620.3
    Air pollution exposure
     LEG2.631.350.242812.10.071
     MEG-R2.121.454315.8
     MEG-D2.362.344722.5
    Smoking
     none2.301.820.4488318.40.552
     current2.101.651515.8
    HTN, mmHg
      < 140/902.171.590.1016616.10.055
      ≥ 140/902.572.483223.4
    DM, HbA1c (%)
      < 6.52.141.520.0077115.80.006
      ≥ 6.52.933.552727.6
    Urine cadmium, μg/g cr
     1Q (0.09–0.44)1.930.900.0071712.60.145
     2Q (0.44–0.75)1.991.692417.4
     3Q (0.75–1.16)2.402.382518.2
     4Q (1.16–8.91)2.842.433223.4
    Urine mercury, μg/g cr
     1Q (0.09–0.42)1.961.050.0201914.10.023
     2Q (0.42–0.63)1.981.331913.8
     3Q (0.63–0.93)2.561.502417.5
     4Q (0.93–4.16)2.653.483626.3
    Blood lead, μg/dL
     1Q (0.77–2.13)2.331.660.9412518.80.830
     2Q (2.13–2.70)2.311.742719.3
     3Q (2.70–3.50)2.171.912518.2
     4Q (3.50–10.37)2.261.722115.3
    Total2.271.809817.9
    VariablesUnadjustedAdjusted
    OR95 % CIOR95 % CI
    Sex
     male
     female1.070.681.690.730.391.37
    Age, year
     40–59
      ≥ 601.961.183.281.811.053.13
    Occupation
     non-manual
     manual1.260.802.001.781.033.07
    Smoking
     none
     current0.830.451.520.880.431.82
    Air pollution exposure
     LEG
     MEG-R1.360.603.052.070.864.96
     MEG-D2.100.934.714.071.6510.01
    Hypertension, mmHg
      < 140/90
      ≥ 140/901.580.982.551.671.002.78
    DM, HbA1c (%)
      < 6.5
      ≥ 6.52.021.213.372.511.434.40
    Urine cadmium, μg/g cr
     1Q (0.09 ~ 0.44)
     2Q (0.44 ~ 0.75)1.460.742.861.460.713.02
     3Q (0.75 ~ 1.16)1.540.793.021.510.723.13
     4Q (1.16 ~ 8.91)2.111.114.022.201.034.67
    Urine mercury, μg/g cr
     1Q (0.09 ~ 0.42)
     2Q (0.42 ~ 0.63)0.970.491.930.960.462.01
     3Q (0.63 ~ 0.93)1.290.672.491.300.642.63
     4Q (0.93 ~ 4.16)2.171.174.032.651.345.25
    Blood lead, μg/dL
     1Q (0.77 ~ 2.13)
     2Q (2.13 ~ 2.70)1.030.561.880.960.491.87
     3Q (2.70 ~ 3.50)0.960.521.780.890.441.77
     4Q (3.50 ~ 10.37)0.780.411.470.670.321.41
    VariablesUnadjustedAdjusteda
    higher heavy metalsAir pollution n OR95 % CIOR95 % CI
    Model 1None32011
    U-Hg or U-Cd1801.791.112.872.031.223.36
    U-Hg and U-Cd472.661.325.363.321.557.11
    Model 2NoneLEG3611
    MEG-R1531.980.439.052.130.459.95
    MEG-D1314.210.9418.664.791.0521.80
    U-Hg or/and U-CdLEG304.250.7822.884.330.7823.89
    MEG-R1194.981.1222.126.491.4229.65
    MEG-D786.261.3828.388.121.7437.92
    Table 1 General characteristics of study population by air pollution

    p-value by Chi-square test; non-manual: office work; the unemployed; manual: farmer, labor, construction, blue collar job

    LEG ‘less exposed group’ who lived 5 km or more away from the cement plant

    MEG ‘more exposed group’ who lived within the 1 km radius of the cement plant

    MEG-R MEG in rural area; MEG-D: MEG in downtown

    Table 2 Geometric mean of U-NAG and prevalence of higher U-NAG by related factors

    *p-value by independent t-test, ANOVA, calculated by logarithmically transforming variables

    **p-value by Chi-square test

    Table 3 OR of U-NAG by related factors and air pollution exposure

    Logistic regression with adjusted for all variables; CI confidence interval

    Table 4 OR of higher U-NAG by heavy metals and air pollution exposure

    Model 1: Concurrent exposure of heavy metals; Model 2: Interaction between air pollution and heavy metal

    Logistic regression method

    aAdjusted by sex, age, HTN, DM


    Ann Occup Environ Med : Annals of Occupational and Environmental Medicine
    Close layer
    TOP