Recently, there has been increasing worldwide concern about outdoor air pollution, especially particulate matter (PM), which has been extensively researched for its harmful effects on the respiratory system. However, sufficient research on its effects on cardiovascular diseases, such as hypertension, remains lacking. In this study, we examine the associations between PM levels and hypertension and hypothesize that higher PM concentrations are associated with elevated blood pressure.
A total of 133,935 adults aged ≥ 40 years who participated in the Korean Genome and Epidemiology Study were analyzed. Multiple linear regression analyses were conducted to investigate the short- (1–14 days), medium- (1 and 3 months), and long-term (1 and 2 years) impacts of PM on blood pressure. Logistic regression analyses were conducted to evaluate the medium- and long-term effects of PM on blood pressure elevation after adjusting for sex, age, body mass index, health-related lifestyle behaviors, and geographic areas.
Using multiple linear regression analyses, both crude and adjusted models generated positive estimates, indicating an association with increased blood pressure, with all results being statistically significant, with the exception of PM levels over the long-term period (1 and 2 years) in non-hypertensive participants. In the logistic regression analyses on non-hypertensive participants, moderate PM10 (particulate matter with diameters < 10 μm) and PM2.5 (particulate matter with diameters < 2.5 μm) levels over the long-term period and all high PM10 and PM2.5 levels were statistically significant after adjusting for various covariates. Notably, high PM2.5 levels of the 1 year exhibited the highest odds ratio of 1.23 (95% confidence interval: 1.19–1.28) after adjustment.
These findings suggest that both short- and long-term exposure to PM is associated with blood pressure elevation.
Sunlight exposure is a major risk factor for eye disorders. Most outdoor workers cannot avoid sunlight exposure. This study aimed to analyze the relationship between outdoor sunlight exposure and eye disorders in an economically active population.
This study analyzed the 2008–2012 Korea National Health and Nutritional Examination Survey data. Sunlight exposure was categorized as < 5 hours and > 5 hours. We also analyzed the dose-dependent relationship between exposure to sunlight and eye disorders (cataracts, pterygium, and age-related macular degeneration [AMD]) using data from 2010 to 2012 by subdividing the exposure groups into < 2 hours, 2–5 hours, and ≥ 5 hours. Eye disorders were diagnosed by an ophthalmologist. The study participants were stratified by sex, and the results were analyzed using the χ2 test and multiple logistic regression analysis.
In the female group, the odds ratio of pterygium in the high-level sunlight exposure group was 1.47 (95% confidence interval [CI]: 1.15–1.89). Regarding AMD, the odds ratios were 1.42 (95% CI: 1.16–1.73), 1.33 (95% CI: 1.03–1.73), and 1.58 (95% CI: 1.15–2.16) in the total, male, and female groups, respectively. Analysis of the dose-response relationship revealed that the odds ratios of pterygium in the high-level sunlight exposure subgroups of the total and female groups were 1.62 (95% CI: 1.25–2.08) and 2.00 (95% CI: 1.39–2.88), respectively.
This study demonstrated a relationship between sunlight exposure and eye disorders in an economically active population. Women were found to be especially vulnerable to pterygium. However, additional prospective studies to clarify the pathophysiology of pterygium are needed.
Citations
The objectives of the present study are to: (
We identified 47 cases of illnesses from exposure to environmental heat in outdoor workers in Korea from 2010 to 2014, based on review of workers’ compensation data. We also obtained the information on location, time, and work environment of each heat-related illness.
Our major results are that 29 cases (61.7%) occurred during a heat wave. Forty five cases (95.7%) occurred when the maximum estimated WBGT (WBGTmax) was equal to or greater than the case specific threshold value which was determined by acclimatization and metabolic rate. Twenty two cases (46.8%) were not acclimated to the heat. Thirty-seven cases (78.7%) occurred after tropical night (temperature above 25 °C), during which many people may find it hard to sleep.
Personal risk factors such as heat acclimation as well as environmental factors and high metabolic rate during work are the major determinants of heat-related illnesses.
Citations