The objective of this study is to evaluate the risk of exposure to second hand smoke (SHS) during working hours by job status and occupation.
Using the 4th Korean Working Conditions Survey (KWCS), 49,674 respondents who answered the question about SHS were studied. A chi-square test was carried out to determine whether there is a significant different in SHS exposure frequency by general and occupational characteristics and experience of discrimination at work and logistic regression analysis was carried out to identify the risk level of SHS exposure by variables.
In this study, we found that male workers in their 40s and 50s, workers employed in workplaces with fewer than 50 employees, daily workers, and people working outdoors had a higher rate of exposure to SHS than the others. The top five occupations with the highest SHS exposure were construction and mining-related occupations, metal core-makers-related trade occupations, wood and furniture, musical instrument, and signboard-related trade occupations, transport and machine-related trade occupations, transport and leisure services occupations. The least five exposed occupations were public and enterprise senior officers, legal and administrative professions, education professionals, and health, social welfare, and religion-related occupations.
Tobacco smoke is a significant occupational hazard. Smoking ban policy in the workplace can be a very effective way to reduce the SHS exposure rate in the workplace and can be more effective if specifically designed by the job status and various occupations.
Citations
To investigate the effects of smoking on hearing loss among workers exposed to occupational noise.
From the results of a special workers health examination performed in 2011, we enrolled 8,543 subjects exposed to occupational noise and reviewed the findings. Using self-reported questionnaires and health examination results, we collected data on age, smoking status, disease status, height, weight, and biochemistry and pure tone audiometry findings. We divided the workers into 3 groups according to smoking status (non-smoker, ex-smoker, current smoker). Current smokers (n = 3,593) were divided into 4 groups according to smoking amount (0.05–9.9, 10–19.9, 20–29.9, ≥30 pack-years). We analyzed the data to compare hearing thresholds between smoking statuses using analysis of covariance (ANCOVA) after controlling for confounder effects.
According to ANCOVA, the hearing thresholds of current smokers at 2 k, 3 k, and 4 kHz were significantly higher than that of the other groups. Multiple logistic regression for smoking status (reference: non-smokers) showed that the adjusted odds ratios of current smokers were 1.291 (95% confidence interval [CI]: 1.055–1.580), 1.180 (95% CI: 1.007–1.383), 1.295 (95% CI: 1.125–1.491), and 1.321 (95% CI: 1.157–1.507) at 1 k, 2 k, 3 k, and 4 kHz, respectively. Based on smoking amount, the adjusted odds ratios were 1.562 (95% CI: 1.013–2.408) and 1.643 (95% CI: 1.023–2.640) for the 10–19.9 and ≥30 pack-years group, respectively, at 1 kHz (reference: 0.05–9.9 pack-years). At 2 kHz, the adjusted odds ratios were increased statistically significantly with smoking amount for all groups. At all frequencies tested, the hearing thresholds of noise-exposed workers were significantly influenced by current smoking, in particular, the increase of hearing loss at low frequencies according to smoking amount was more prevalent.
Current smoking significantly influenced hearing loss at all frequencies in workers exposed to occupational noise, and heavier smoking influenced low-frequency hearing loss more greatly. There was a dose–response relationship between smoking amount and low-frequency hearing thresholds; however, this was not observed for high-frequency hearing thresholds. Therefore, well-designed prospective studies are needed to clarify the effects of smoking on the degree of hearing loss.
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations