Combined heat and power generation (CHP generation, also called ‘cogeneration’) is attracting public attention for its high thermal efficiency, without considering possible adverse environmental health effects.This study investigated the potential role of cogeneration plants in inducing 3 environmental diseases: asthma, allergic rhinitis, and atopic dermatitis.
From 1 January 2013 to 31 December 2017, the towns (dongs) of South Korea in which a cogeneration plant started operation were selected as study sites. For comparison, a matched control dong with the most similar Gross Regional Domestic Product for each case dong was selected. The numbers of outpatient visits, inpatient admissions, and emergency visits provided by the National Health Insurance Sharing Service (NHISS) were analyzed using an interrupted time-series design. For air pollutants, the concentrations of 5 air pollutants from the AIRKOREA dataset were used.
A total of 6 cogeneration plants in 6 case dongs started operation during the study period. For overall case dongs, the pre-CHP trend was 1.04 (95% confidence interval [CI]: 1.038–1.042), and the post-CHP trend was 1.248 (95% CI: 1.244–1.253). The intercept change due to the CHP plant was 1.15 (95% CI: 1.137–1.162). For overall control dongs, the pre-CHP trend was 1.133 (95% CI: 1.132–1.135), and the post-CHP trend was 1.065 (95% CI: 1.06–1.069). The intercept change due to the CHP plant was 0.888 (95% CI: 0.878–0.899). Only for CO and NO2, the relative risk (RR) for overall case dongs was statistically significantly increased, and the RR for the overall control dongs was statistically insignificant.
Possible hazardous emissions, like CO and NO2, from cogeneration plants could induce environmental diseases in nearby community populations. The emissions from cogeneration plants should be investigated regularly by a governmental agency, and the long-term health outcomes of nearby community residents should be investigated.
Citations
Polycyclic aromatic hydrocarbons (PAHs) produced by incomplete combustion have negative effects on human health due to their carcinogenicity and teratogenicity. Indoor sources of PAHs include tobacco smoke, heating sources, and cooking. This study evaluated the relationship between human PAH exposure and residence characteristics.
This study was based on the second Korean National Environmental Health Survey (2012–2014). Non-smoking housewives were included in the analyses (
The adjusted geometric mean concentrations of urinary 2-hydroxyfluorene and 1-hydroxyphenanthrene were significantly higher in the group residing within 100 m of a major road (
Our study shows the evidence of associations between some urinary PAH metabolite levels (1-hydroxyphenanthrene and 1-hydroxypyrene) and residence characteristics. Additional studies are needed to clarify these associations.
Citations
The objectives of the present study are to: (
We identified 47 cases of illnesses from exposure to environmental heat in outdoor workers in Korea from 2010 to 2014, based on review of workers’ compensation data. We also obtained the information on location, time, and work environment of each heat-related illness.
Our major results are that 29 cases (61.7%) occurred during a heat wave. Forty five cases (95.7%) occurred when the maximum estimated WBGT (WBGTmax) was equal to or greater than the case specific threshold value which was determined by acclimatization and metabolic rate. Twenty two cases (46.8%) were not acclimated to the heat. Thirty-seven cases (78.7%) occurred after tropical night (temperature above 25 °C), during which many people may find it hard to sleep.
Personal risk factors such as heat acclimation as well as environmental factors and high metabolic rate during work are the major determinants of heat-related illnesses.
Citations
Citations
Citations