Skip Navigation
Skip to contents

Ann Occup Environ Med : Annals of Occupational and Environmental Medicine

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse articles > Author index
Search
Hee-seung Son 2 Articles
Comparison of sleep quality based on direction of shift rotation in electronics workers
Youil Shon, Seungho Ryu, Byung-Seong Suh, Soo-Geun Kim, Won-Sool Kim, Hee-Seung Son, Hee-Yun Kim, Han-Seur Jeong
Ann Occup Environ Med 2016;28:37.   Published online September 5, 2016
DOI: https://doi.org/10.1186/s40557-016-0122-3
AbstractAbstract PDFPubReaderePub
Background

Previous studies have reported the effects of direction of shift rotation on sleep, however, the findings are inconsistent. In this study, we investigated sleep quality related to direction of shift rotation using large-scale data from shiftwork-specific health examinations of electronics workers.

Methods

This study included 4750 electronics workers working in a rotating 3-shift system who completed a medical examination for shift workers survey from January 1 to December 31, 2014, at a general hospital. The subjects were categorized into one of two groups according to direction of shift rotation. We compared sleep quality index between the subjects who worked in forward rotation and backward rotation systems.

Results

Backward rotation was positively associated with prevalence of poor sleep quality. In the multivariable-adjusted model, when comparing backward rotation to forward rotation, the odds ratio (OR) with 95 % confidence interval (95 % CI) for poor sleep quality was 1.95 (1.58–2.41). After stratifying by gender, the ORs (95 % CIs) for poor sleep quality in male and female was 1.92 (1.47–2.49) and 2.13 (1.47–3.08), respectively. In subgroup analyses, backward rotation was significantly associated with poor sleep quality in workers ≥30 years of age compared with workers <30 years of age (adjusted OR 2.60 vs. 1.89, respectively; P for interaction <0.001).

Conclusions

Our study supports that a backward rotation system is associated with poor sleep quality. Forward rotation systems should be considered to reduce sleep problems.


Citations

Citations to this article as recorded by  
  • Tackling Shift Work: Cardiovascular Health in the Auto Industry
    Marius Gabriel Bunescu, Veronica Gheorman, Iulia Rahela Marcu, Cristian Virgil Lungulescu, Venera Cristina Dinescu
    Healthcare.2024; 12(11): 1097.     CrossRef
  • Working Conditions and Fatigue in Japanese Shift Work Nurses: A Cross-sectional Survey
    Ryohei Kida, Yukie Takemura
    Asian Nursing Research.2022; 16(2): 80.     CrossRef
  • Eveningness is associated with sedentary behavior and increased 10-year risk of cardiovascular disease: the SCAPIS pilot cohort
    Mio Kobayashi Frisk, Jan Hedner, Ludger Grote, Örjan Ekblom, Daniel Arvidsson, Göran Bergström, Mats Börjesson, Ding Zou
    Scientific Reports.2022;[Epub]     CrossRef
  • Impact of a change in rostering practices on absenteeism: An observational descriptive study
    Esther Monica Peijin Fan, Fazila Aloweni, Mei Ling Lim, Kelly Chai Yuen Woh, Shin Yuh Ang
    Proceedings of Singapore Healthcare.2022; 31: 201010582199349.     CrossRef
  • Which Shiftwork Pattern Is the Strongest Predictor for Poor Sleep Quality in Nurses?
    Kampanat Wangsan, Naesinee Chaiear, Kittisak Sawanyawisuth, Piyanee Klainin-Yobas, Kanjana Simajareuk, Watchara Boonsawat
    International Journal of Environmental Research and Public Health.2022; 19(21): 13986.     CrossRef
  • Comparison of Sleep and Attention Metrics Among Nurses Working Shifts on a Forward- vs Backward-Rotating Schedule
    Marco Di Muzio, Giulia Diella, Emanuele Di Simone, Mariella Pazzaglia, Valentina Alfonsi, Luana Novelli, Angelo Cianciulli, Serena Scarpelli, Maurizio Gorgoni, Annamaria Giannini, Michele Ferrara, Fabio Lucidi, Luigi De Gennaro
    JAMA Network Open.2021; 4(10): e2129906.     CrossRef
  • Factors Associated with Poor Quality of Sleep in Construction Workers: A Secondary Data Analysis
    Youkyung Kim, Sangeun Lee, Jeeyeon Lim, Soyeon Park, Sojeong Seong, Youngshin Cho, Heejung Kim
    International Journal of Environmental Research and Public Health.2021; 18(5): 2279.     CrossRef
  • Effects of Clockwise and Counterclockwise Job Shift Work Rotation on Sleep and Work-Life Balance on Hospital Nurses
    Dana Shiffer, Maura Minonzio, Franca Dipaola, Mattia Bertola, Antonio Roberto Zamuner, Laura Adelaide Dalla Vecchia, Monica Solbiati, Giorgio Costantino, Raffaello Furlan, Franca Barbic
    International Journal of Environmental Research and Public Health.2018; 15(9): 2038.     CrossRef
  • 61 View
  • 1 Download
  • 8 Web of Science
  • 8 Crossref
Close layer
Association of cadmium with diabetes in middle-aged residents of abandoned metal mines: the first health effect surveillance for residents in abandoned metal mines
Hee-seung Son, Soo-geun Kim, Byung-seong Suh, Dong-uk Park, Dae-seon Kim, Seung-do Yu, Yeong-seoub Hong, Jung-duck Park, Byung-kook Lee, Jai-dong Moon, Joon Sakong
Ann Occup Environ Med 2015;27:20.   Published online August 24, 2015
DOI: https://doi.org/10.1186/s40557-015-0071-2
AbstractAbstract PDFPubReaderePub
Objective

The aim of this study was to determine the association between urinary cadmium (U-cd) concentration and diabetes in middle-aged Korean residents of abandoned mines using the first Health Effect Surveillance for Residents in Abandoned Metal mines (HESRAM).

Methods

This study was cross-sectional study conducted on 719 residents between 40–70 years in 38 abandoned metal mines in Korea. Data was collected by HESRAM from 2008 to 2011. The correlation coefficient of U-cd and fasting blood glucose, odds ratio in urinary cadmium tertiles and diabetes prevalence was analyzed according to the sex category.

Results

The correlation coefficient U-cd concentration and fasting blood glucose was 0.182 in male. Logistic regression analysis in male revealed a third tertile odds ratio of U-cd (2 μg/g creatinine < U-cd) while diabetes prevalence was 1.81 (95 % CI 1.05-3.12) with adjusted age, BMI, smoking and alcohol consumption, region, family income. On the other hand, the odds ratio for third tertile of U-cd (3 μg/g creatinine < U-cd) between diabetes prevalence in female was 1.39 (95 % CI 0.52-3.72) in addition to adjusted menopausal status.

Conclusions

Environmental exposure to cadmium in abandoned mine residents was associated with diabetes in male. Closed monitoring and periodic evaluation of the health effects of chronic environmental exposure on abandoned mines residents will be needed.


Citations

Citations to this article as recorded by  
  • Associations of metals and metal mixtures with glucose homeostasis: A combined bibliometric and epidemiological study
    Kai Li, Yisen Yang, Jiaxin Zhao, Quan Zhou, Yanbing Li, Ming Yang, Yaoyu Hu, Jing Xu, Meiduo Zhao, Qun Xu
    Journal of Hazardous Materials.2024; 470: 134224.     CrossRef
  • Is Environmental Cadmium Exposure Causally Related to Diabetes and Obesity?
    Soisungwan Satarug
    Cells.2023; 13(1): 83.     CrossRef
  • Environmental Cadmium Exposure and Type 2 Diabetes Mellitus Risk: An Overview of Systematic Reviews
    Julia Hildebrand, Swarni Thakar, Tonya-Leah Watts, Laura Banfield, Lehana Thabane, Joseph Macri, Stephen Hill, M. Constantine Samaan
    Exposure and Health.2022; 14(3): 743.     CrossRef
  • Effects of Environmental Exposure to Cadmium and Lead on the Risks of Diabetes and Kidney Dysfunction
    Supabhorn Yimthiang, Phisit Pouyfung, Tanaporn Khamphaya, Saruda Kuraeiad, Paleeratana Wongrith, David A. Vesey, Glenda C. Gobe, Soisungwan Satarug
    International Journal of Environmental Research and Public Health.2022; 19(4): 2259.     CrossRef
  • Cadmium exposure and risk of diabetes and prediabetes: A systematic review and dose-response meta-analysis
    Tommaso Filippini, Lauren A. Wise, Marco Vinceti
    Environment International.2022; 158: 106920.     CrossRef
  • Mitigation of Cadmium Toxicity through Modulation of the Frontline Cellular Stress Response
    Soisungwan Satarug, David A. Vesey, Glenda C. Gobe
    Stresses.2022; 2(3): 355.     CrossRef
  • A benchmark dose analysis for urinary cadmium and type 2 diabetes mellitus
    Peng Shi, Huanchang Yan, Xingjun Fan, Shuhua Xi
    Environmental Pollution.2021; 273: 116519.     CrossRef
  • Environmental pollution and diabetes mellitus
    Amany El-Sikaily, Mohamed Helal
    World Journal of Meta-Analysis.2021; 9(3): 234.     CrossRef
  • Cadmium exposure, fasting blood glucose changes, and type 2 diabetes mellitus: A longitudinal prospective study in China
    Lili Xiao, Wei Li, Chunmei Zhu, Shijie Yang, Min Zhou, Bin Wang, Xing Wang, Dongming Wang, Jixuan Ma, Yun Zhou, Weihong Chen
    Environmental Research.2021; 192: 110259.     CrossRef
  • Associations between metabolic syndrome and four heavy metals: A systematic review and meta-analysis
    Ping Xu, Aiping Liu, Fengna Li, Alexey A. Tinkov, Longjian Liu, Ji-Chang Zhou
    Environmental Pollution.2021; 273: 116480.     CrossRef
  • Adipose tissue cadmium concentrations as a potential risk factor for insulin resistance and future type 2 diabetes mellitus in GraMo adult cohort
    Inmaculada Salcedo-Bellido, Celia Gómez-Peña, Francisco M. Pérez-Carrascosa, Petra Vrhovnik, Vicente Mustieles, Ruth Echeverría, Željka Fiket, Celia Pérez-Díaz, Rocío Barrios-Rodríguez, José Juan Jiménez-Moleón, Juan Pedro Arrebola
    Science of The Total Environment.2021; 780: 146359.     CrossRef
  • Cadmium Is Associated with Type 2 Diabetes in a Superfund Site Lead Smelter Community in Dallas, Texas
    Bert B. Little, Robert Reilly, Brad Walsh, Giang T. Vu
    International Journal of Environmental Research and Public Health.2020; 17(12): 4558.     CrossRef
  • Advancing Global Health through Environmental and Public Health Tracking
    Paolo Lauriola, Helen Crabbe, Behrooz Behbod, Fuyuen Yip, Sylvia Medina, Jan C. Semenza, Sotiris Vardoulakis, Dan Kass, Ariana Zeka, Irma Khonelidze, Matthew Ashworth, Kees de Hoogh, Xiaoming Shi, Brigit Staatsen, Lisbeth E. Knudsen, Tony Fletcher, Danny
    International Journal of Environmental Research and Public Health.2020; 17(6): 1976.     CrossRef
  • Assessment of heavy metals by ICP‐OES and their impact on insulin stimulating hormone and carbohydrate metabolizing enzymes
    Shakil Saba, Muhammad Sajid Hamid Akash, Kanwal Rehman, Uzma Saleem, Fareeha Fiayyaz, Tanvir Ahmad
    Clinical and Experimental Pharmacology and Physiology.2020; 47(10): 1682.     CrossRef
  • Evaluation of the association between urinary cadmium levels below threshold limits and the risk of diabetes mellitus: a dose-response meta-analysis
    Fei-Fei Guo, Zhi-Yong Hu, Bing-Yan Li, Li-Qiang Qin, Chunling Fu, Huifang Yu, Zeng-Li Zhang
    Environmental Science and Pollution Research.2019; 26(19): 19272.     CrossRef
  • Cadmium exposure induces pancreatic β-cell death via a Ca2+-triggered JNK/CHOP-related apoptotic signaling pathway
    Cheng-Chin Huang, Chun-Ying Kuo, Ching-Yao Yang, Jui-Ming Liu, Ren-Jun Hsu, Kuan-I Lee, Chin-Chuan Su, Chin-Ching Wu, Ching-Ting Lin, Shing-Hwa Liu, Chun-Fa Huang
    Toxicology.2019; 425: 152252.     CrossRef
  • Roles of C-reactive protein on the association between urinary cadmium and type 2 diabetes
    Lili Xiao, Yun Zhou, Jixuan Ma, Limin Cao, Chunmei Zhu, Wei Li, Dongming Wang, Lieyang Fan, Zi Ye, Weihong Chen
    Environmental Pollution.2019; 255: 113341.     CrossRef
  • Cadmium Body Burden and Gestational Diabetes Mellitus: A Prospective Study
    Wenyu Liu, Bin Zhang, Zheng Huang, Xinyun Pan, Xiaomei Chen, Chen Hu, Hongxiu Liu, Yangqian Jiang, Xiaojie Sun, Yang Peng, Wei Xia, Shunqing Xu, Yuanyuan Li
    Environmental Health Perspectives.2018;[Epub]     CrossRef
  • Heavy Metal Exposure and Metabolic Syndrome: Evidence from Human and Model System Studies
    Antonio Planchart, Adrian Green, Cathrine Hoyo, Carolyn J. Mattingly
    Current Environmental Health Reports.2018; 5(1): 110.     CrossRef
  • Cadmium affects blood pressure and negatively interacts with obesity: Findings from NHANES 1999–2014
    Qi Wang, Sheng Wei
    Science of The Total Environment.2018; 643: 270.     CrossRef
  • Dietary Cadmium Intake and Its Effects on Kidneys
    Soisungwan Satarug
    Toxics.2018; 6(1): 15.     CrossRef
  • Gender-specific differences of interaction between cadmium exposure and obesity on prediabetes in the NHANES 2007–2012 population
    Fei Jiang, Xueyuan Zhi, Miao Xu, Bingyan Li, Zengli Zhang
    Endocrine.2018; 61(2): 258.     CrossRef
  • Association of urinary cadmium with risk of diabetes: a meta-analysis
    Yujie Li, Yun Zhang, Weijing Wang, Yili Wu
    Environmental Science and Pollution Research.2017; 24(11): 10083.     CrossRef
  • Kidney Cadmium Toxicity, Diabetes and High Blood Pressure: The Perfect Storm
    Soisungwan Satarug, David A. Vesey, Glenda C. Gobe
    The Tohoku Journal of Experimental Medicine.2017; 241(1): 65.     CrossRef
  • Current health risk assessment practice for dietary cadmium: Data from different countries
    Soisungwan Satarug, David A. Vesey, Glenda C. Gobe
    Food and Chemical Toxicology.2017; 106: 430.     CrossRef
  • The role of cadmium in obesity and diabetes
    Alexey A. Tinkov, Tommaso Filippini, Olga P. Ajsuvakova, Jan Aaseth, Yordanka G. Gluhcheva, Juliana M. Ivanova, Geir Bjørklund, Margarita G. Skalnaya, Eugenia R. Gatiatulina, Elizaveta V. Popova, Olga N. Nemereshina, Marco Vinceti, Anatoly V. Skalny
    Science of The Total Environment.2017; 601-602: 741.     CrossRef
  • Association between cadmium exposure and diabetes mellitus risk: a prisma-compliant systematic review and meta-analysis
    Ming Wu, Jukun Song, Chen Zhu, Yadong Wang, Xinhai Yin, Guanglei Huang, Ke Zhao, Jianguo Zhu, Zhuhui Duan, Lingkai Su
    Oncotarget.2017; 8(68): 113129.     CrossRef
  • 63 View
  • 0 Download
  • 26 Web of Science
  • 27 Crossref
Close layer

Ann Occup Environ Med : Annals of Occupational and Environmental Medicine
Close layer
TOP