Health forecasting has been used in an attempt to provide timely and tailored meteorological information to patients and healthcare providers so that they might take appropriate actions to mitigate health risks and manage healthcare-related needs. This study examined the in-depth perceptions of healthcare providers and the general public regarding the utilization of meteorological information in the healthcare system in Korea.
The COREQ (Consolidated Criteria for Reporting Qualitative Research) checklist was applied to this study. We conducted three focus group discussions in accordance with semi-structured guidelines developed to deal with various aspects of the utilization of meteorological information in healthcare settings. The verbatim transcriptions and field notes were analyzed according to content analysis.
Six physicians, four nurses, three emergency medical technicians, and seven members of the general public participated in the focus group discussions. There were some individual discrepancies among most participants regarding the health effects of climate change. Although several physician participants felt that meteorological information utilization is not a prime concern during patient care, most of the general public participants believed that it should be used in the patient care process. The provision of meteorological information to patients undergoing care is expected to not only improve the effective management of climate-sensitive diseases, but also boost rapport between healthcare providers and patients.
More attempts should be made to provide meteorological information to groups vulnerable to climate change, and the effects of this information should be evaluated in terms of effectiveness and inequality. The findings of this study will be helpful in countries and institutions trying to introduce health forecasting services.
The online version of this article (10.1186/s40557-018-0214-3) contains supplementary material, which is available to authorized users.
Citations
Recently, noise coming from the neighborhood via floor wall has become a great social problem. The noise between the floors can be a cause of physical and psychological problems, and the different types of floor impact sound (FIS) may have the different effects on the human’s body and mind. The purpose of this study is to assess the responses of subjective feeling, task performance ability, cortisol and HRV for the various types of floor impact.
Ten men and 5 women were enrolled in our study, and the English listening test was performed under the twelve different types of FIS, which were made by the combinations of bang machine (B), tapping machine (T), impact ball (I) and sound-proof mattress (M). The 15 subjects were exposed to each FIS for about 3 min, and the subjective annoyance, performance ability (English listening test), cortisol level of urine/saliva and heart rate variability (HRV) were examined. The sound pressure level (SPL) and frequency of FIS were analyzed. Repeated-measures ANOVA, paired t-test, Wilcoxon signed rank test were performed for data analysis.
The SPL of tapping machine (T) was reduced with the soundproof mattress (M) by 3.9–7.3 dBA. Impact ball (I) was higher than other FIS in low frequency (31.5–125 Hz) by 10 dBA, and tapping machine (T) was higher than other FIS in high frequency (2–4 k Hz) by 10 dBA. The subjective annoyance is highest in the combination of bang machine and tapping machine (BT), and next in the tapping machine (T). The English listening score was also lowest in the BT, and next in T. The difference of salivary cortisol levels between various types of FIS was significant (
These results suggest that the human’s subjective and objective responses were different according to FIS types and those combinations.
Citations
The need of efficient resource management and full-time accessibility to resources has increased with the development of industry, resulting in the increase of shift workers. Previous researches of past decades show that there are various health effects on shift workers. However, the definition and the form of shift work have varied from each research and occupational harmful factors except for shift work have not been excluded completely in previous researches. Therefore, in this research, we tried to find out the effect of shift work focusing on the hypertension. To complement previously mentioned weakness of other researches, we performed our research on participants to whom we could minimize other risk factors excluding shift work.
This research examined 1,953 petrochemical plant male workers (shift work 1,075, day worker 878) who did medical checkup from 1st Jan. 2014 to 31th Dec. 2014 in a general hospital located in Ulsan, based on their medical records and questionnaires. With the questionnaire, we found out their basic information including age, social status, occupational history, and we took their physical measurements.
Compared to day workers, shift workers’ odds ratio of developing hypertension was 1.31 (95% CI 0.98–1.75). After adjusting confounding variables, adjusted odds ratio for entire subjects was 1.51 (95% CI 1.11–2.06). Also, for subjects who were in continuous service for over 20 years, odds ratio was 1.51 (95% CI 1.08–2.11).
Shift workers had a higher chance of hypertension than day workers do. Particularly, the longer the workers work continuously, the risk of hypertension getting higher.
Citations
The purpose of this study was to investigate hearing threshold changes of workers with unilateral conductive hearing loss who were exposed to workplace noise for 8-years.
Among 1819 workers at a shipyard in Ulsan, 78 subjects with an air-bone gap ≥10 dBHL in unilateral ears were selected. Factors that could affect hearing were acquired from questionnaires, physical examinations, and biochemistry examinations. Paired
The study included male subjects aged 48.7 ± 2.9, having worked for 29.8 ± 2.7 years. Hearing thresholds increased significantly in CHL ears and SNHL ears at all frequencies (0.5–6 kHz) during follow-up period (
At high-frequencies, particularly at 4 kHz, the range of hearing threshold changes was lower in ears with conductive hearing loss than in contralateral ears. This is suggested as a protective effect against noise exposure.
Citations