Law enforcement officers perform physically demanding tasks that generally remain constant as they age. However, there is limited population-specific research on age, gender and normative fitness values for law enforcement officers as opposed to those of the general population. The purpose of this study was to profile the current level of fitness for highway patrol officers based on age and gender and provide percentile ranking charts unique to this population.
Retrospective data for six-hundred and thirty-one state troopers (♂ = 597; mean age = 39.52 ± 8.09 yrs; mean height = 180.72 ± 7.06 cm; mean weight = 93.66 ± 15.72 kg: ♀ = 34; mean age = 36.20 ± 8.45 years; mean height = 169.62 ± 6.65 cm; mean weight = 74.02 ± 14.91 kg) collected in 2014–2015 were provided for analysis. Data included demographic (age), anthropometric (height and weight), and select fitness (VJ, push-ups, sit ups, isometric leg/back strength, isometric grip strength and 20 m shuttle run test) information.
There were generally significant differences between genders for all anthropometric and fitness measures, most consistently in the 30–39 age groups. While there was a general decline in push-up and shuttle run performance in female officers, these results did not reach significance. For male officers, there were significant differences between the 20–29 year-old age group and the 30–39, 40–49 and 50–59 year-old groups with the younger group performing better in VJ, push-ups, sit ups and number of shuttle runs than the older groups. There were no differences in isometric grip strength and leg back dynamometer measures between age groups.
Male officers tended to be heavier, taller and perform significantly better than female officers in all measures bar sit-ups. While there appeared to be a general decline in certain physical characteristics across genders with increasing age the notable differences were between the youngest male age group (20–29 years) and all other male age groups with a potential reason being the lack of fitness requirements once typically younger cadets leave the academy. Percentile rankings for the assessed measures were found to have elements very specific to this population when compared to the general population and those provided in this paper can be used to inform future profiling and research in this population.
Citations
The law enforcement officer profession requires performance of arduous occupational tasks while carrying an external load, consisting of, at minimum, a chest rig, a communication system, weaponry, handcuffs, personal protective equipment and a torch. The aim of this systematic review of the literature was to identify and critically appraise the methodological quality of published studies that have investigated the impacts of body armour on task performance and to synthesize and report key findings from these studies to inform law enforcement organizations.
Several literature databases (Medline, CINAHL, SPORTDiscus, EMBAS) were searched using key search words and terms to identify appropriate studies. Studies meeting the inclusion criteria were critically evaluated using the Downs and Black protocol with inter-rater agreement determined by Cohen’s Kappa.
Sixteen articles were retained for evaluation with a mean Downs and Black score of 73.2 ± 6.8% (k = 0.841). Based on the research quality and findings across the included studies, this review determined that while effects of body armour on marksmanship and physiological responses have not yet been adequately ascertained, body armour does have significant physical performance and biomechanical impacts on the wearer, including: a) increased ratings of perceived exertion and increased time to complete functional tasks, b) decreased work capability (indicated by deterioration in fitness test scores), c) decreased balance and stability, and d) increased ground reaction forces.
Given the physical performance and biomechanical impacts on the wearer, body armour should be carefully selected, with consideration of the physical fitness of the wearers and the degree to which the armour systems can be ergonomically optimized for the specific population in question.
Citations
This study was conducted to check whether self-resilience, one of the characteristics known to affect the occurrence of post-traumatic stress disorder (PTSD) symptoms after experiencing traumatic events, could serve as a protective factor for police officers whose occupational factors are corrected.
We conducted a cross-sectional study in which 112 male police officers in Gangwon Province participated. They visited the Wonju Severance Christian Hospital Occupational Environment Center for medical check-ups from June to December 2015. Their general characteristics were identified using structured questionnaires, and they were asked to fill in the Korean Occupational Stress Scale-Short Form (KOSS-SF). Further, the Center for Epidemiologic Studies-Depression Scale (CES-D), Connor–Davidson Resilience Scale-Korean (CD-RI-K), and Impact of Event Scale-Revised-Korean version (IES-R-K) were used to evaluate their job stress, depression, self-resilience, and PTSD symptoms. Logistic regression analysis was conducted to correct their personal, occupational, and psychological factors to analyze the relationship between self-resilience and PTSD symptoms.
Among 112 respondents who experienced a traumatic event, those with low self-resilience had significantly higher rate of PTSD symptoms than those with high self-resilience even after correcting for the covariate of general, occupational, and psychological characteristics (odds ratio [OR] 3.51; 95 % CI: 1.06–19.23).
Despite several limitations, these results suggest that a high degree of self-resilience may protect police officers from critical incident-related PTSD symptoms.
Citations
Police officers are often required to undertake physically demanding tasks, like lifting, dragging and pursuing a suspect. Therefore, physical performance is a key requirement.
Retrospective data for 76 male police officers (mean age = 39.42 ± 8.41 years; mean weight = 84.21 ± 12.91 kg) was obtained. Data included anthropometric (skinfolds, estimated percentage body fat, lean body mass and fat mass) and physical performance (1 Repetition Maximum Bench Press, 1–min sit-ups, 1-min push-ups, vertical jump, 300 m run, 1.5 mile run) measures and correlations between anthropometric measurement and fitness score were obtained.
Estimated percentage body fat was significantly (
A targeted approach, going beyond just decreasing percentage body fat to also selectively increasing lean mass, should be applied for optimal improvement in physical fitness performance.
Citations