The International Agency for Research on Cancer (IARC) defined that asbestos is a group 1 substance that causes lung cancer, mesothelioma (pleura and peritoneum), laryngeal cancer, and ovarian cancer in humans. Many studies on lung cancer, and mesothelioma caused by asbestos exposure have been conducted, but there was no case report of ovarian cancer due to asbestos exposure in Korea. We describe a case of ovarian cancer caused by asbestos exposure in a worker who worked at an asbestos textile factory for 3 years and 7 months in the late 1970s.
A 57-year-old woman visited the hospital because she had difficulty urinating. Ovarian cancer was suspected in radiologic examination, and exploratory laparotomy was performed. She was diagnosed with epithelial ovarian cancer. The patient did not undergo postoperative chemotherapy and recovered. She joined the asbestos factory in March 1976 and engaged in asbestos textile twisting and spinning for 1 year, 2 years and 7 months respectively. In addition, she lived near the asbestos factory for more than 20 years. There was no other specificity or family history.
Considering the patient’s occupational and environmental history, it is estimated that she had been exposed to asbestos significantly, so we determined that ovarian cancer in the patient is highly correlated with the occupational exposure of asbestos and environmental exposure is a possible cause as well. Social devices are needed to prevent further exposure to asbestos. It is also necessary to recognize that ovarian cancer can occur in workers who have previously been exposed to asbestos, and the education and social compensation for those workers are needed.
Citations
Interest in radiation-related health problems has been growing with the increase in the number of workers in radiation-related jobs. Although an occupational level of radiation exposure would not likely cause azoospermia, several studies have reported the relation between radiation exposure and azoospermia after accidental or therapeutic radiation exposure. We describe a case of azoospermia in a non-destructive testing (NDT) worker exposed to radiation and discuss the problems of the related monitoring system.
A 39-year-old man who was childless after 8 years of marriage was diagnosed with azoospermia through medical evaluations, including testicular biopsy. He did not have any abnormal findings on biochemical evaluations, other risk factors, or evidence of congenital azoospermia. He had been working in an NDT facility from 2005 to 2013, attaching and arranging gamma-ray films on the structures and inner spaces of ships. The patient’s thermoluminescent dosimeter (TLD) badge recorded an exposure level of 0.01781 Gy for 80 months, whereas results of his florescence in situ hybridization (FISH) translocation assay showed an exposure level of up to 1.926 Gy of cumulative radiation, which was sufficient to cause azoospermia. Thus, we concluded that his azoospermia was caused by occupational radiation exposure.
The difference between the exposure dose records measured through TLD badge and the actual exposure dose implies that the monitor used by the NDT worker did not work properly, and such a difference could threaten the health and safety of workers. Thus, to protect the safety and health of NDT workers, education of workers and strengthening of law enforcement are required to ensure that regulations are strictly followed, and if necessary, random sampling of NDT workers using a cytogenetic dosimeter, such as FISH, should be considered.
Citations
Occupational radiation exposure causes certain types of cancer, specifically hematopoietic diseases like leukemia. In Korea, radiation exposure is monitored and recorded by law, and guidelines for compensation of radiation-related diseases were implemented in 2001. However, thus far, no occupation-related disease was approved for compensation under these guidelines. Here, we report the first case of radiation-related disease approved by the compensation committee of the Korea Workers’ Compensation and Welfare Service, based on the probability of causation.
A 45-year-old man complained of chronic fatigue and myalgia for several days. He was diagnosed with chronic myeloid leukemia. The patient was a diagnostic radiographer at a diagnostic radiation department and was exposed to ionizing radiation for 21 years before chronic myeloid leukemia was diagnosed. His job involved taking simple radiographs, computed tomography scans, and measuring bone marrow density.
To our knowledge, this is the first approved case report using quantitative assessment of radiation. More approved cases are expected based on objective radiation exposure data and the probability of causation. We need to find a resolution to the ongoing demands for appropriate compensation and improvements to the environment at radiation workplaces.
Citations