The aim of this study was to examine the association between shift work and hyperuricemia among steel company workers.
We examined 1,029 male workers at a Korean steel company between June 6 and June 28, 2013. We conducted anthropometric measurements, questionnaire surveys, and blood tests. Hyperuricemia was defined as a serum uric acid concentration of ≥7.0 mg/dL. Logistic regression analyses were performed. In the full model, analysis was adjusted for covariates including age, body mass index, lifestyle factors, and comorbidities. The odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated for all models.
The participants included 276 daytime workers and 753 shift workers. Among daytime workers, 72 (26.1%) individuals had hyperuricemia, as did 282 (37.5%) individuals among shift workers (p <0.001). There was a statistically significant association between shift work and hyperuricemia. In the unadjusted model, the OR of shift work was 1.70 (95% CI 1.25-2.31) for hyperuricemia. In the full model, the OR of shift work was also statistically significant after adjustment for covariates (OR 1.41, 95% CI 1.02-1.96).
Among male steel workers, a significant association between shift work and hyperuricemia was observed.
Citations
Uric acid concentration is known to increase the prevalence of metabolic syndrome by affecting its components, resulting in increased risk of cerebrovascular and cardiovascular diseases, and long-term lead exposure is known to affect this serum uric acid level. In this study, we aimed to examine the association between the causes of hyperuricemia and metabolic syndrome, and to determine whether an increased blood lead level affects hyperuricemia.
Anthropometric measurements, surveys, and blood tests were conducted between May and June 2012 in 759 men working in the steelmaking process at a domestic steel company. Workers were divided into 2 groups according to the presence or absence of hyperuricemia, and an analysis was performed to examine its association with metabolic syndrome. In addition, the workers were divided into 3 groups according to the blood lead level to analyze the association between blood lead and hyperuricemia.
The geometric mean (standard deviation) of the blood lead levels in the hyperuricemia group was significantly higher than that of the healthy group (3.8 [1.8] vs. 3.3 [1.8] μg/dL). The adjusted odds ratio for metabolic syndrome of the hyperuricemia group increased significantly to 1.787 (1.125–2.839) compared with the healthy group. In addition, the adjusted odds ratios for the occurrence of hyperuricemia in the tertile 2 (2.61–4.50 μg/dL) and tertile 3 groups (>4.50 μg/dL) according to blood lead level significantly increased to 1.763 (1.116–2.784) and 1.982 (1.254–3.132), respectively, compared with the tertile 1 group (< 2.61 μg/dL).
Hyperuricemia is believed to function as an independent risk factor for metabolic syndrome, while lead seems to increase the serum uric acid level even at a considerably low blood level. Therefore, attention should be given to patients with hyperuricemia and metabolic syndrome who are prone to lead exposure, and a prospective study should be conducted to identify their causal relationship.
Citations