Some epidemiological studies have estimated exposure among flight attendants with and without breast cancer. However, it is difficult to find a quantitative evaluation of occupational exposure factors related to cancer development individually in the case of breast cancer in flight attendants. That is, most, if not all, epidemiological studies of breast cancer in flight attendants with quantitative exposure estimates have estimated exposure in the absence of individual flight history data.
A 41-year-old woman visited the hospital due to a left breast mass after a regular check-up. Breast cancer was suspected on ultrasonography. Following core biopsy, she underwent various imaging modalities. She was diagnosed invasive ductal carcinoma of no special type (estrogen receptor positive in 90%, progesterone receptor positive in 3%, human epidermal growth factor receptor 2/neu equivocal) with histologic grade 3 and nuclear grade 3 in the left breast. Neoadjuvant chemotherapy was administered to reduce the tumor size before surgery. However, due to serious chemotherapy side effects, the patient opted for alternative and integrative therapies. She joined the airline in January, 1996. Out of all flights, international flights and night flights accounted for 94.9% and 26.2, respectively. Night flights were conducted at least four times per month. Moreover, based on the virtual computer program CARI-6M, the estimated dose of cosmic radiation exposure was 78.81 mSv. There were no other personal triggers or family history of breast cancer.
This case report shows that the potentially causal relationship between occupational harmful factors and the incidence of breast cancer may become more pronounced when night shift workers who work continuously are exposed to cosmic ionizing radiation. Therefore, close attention and efforts are needed to adjust night shift work schedules and regulate cosmic ionizing radiation exposure.
Citations
Probability of causation (PC) is a reasonable way to estimate causal relationships in radiation-related cancer. This study reviewed the international trend, usage, and critiques of the PC method. Because it has been used in Korea, it is important to check the present status and estimation of PC in radiation-related cancers in Korea.
Research articles and official reports regarding PC of radiation-related cancer and published from the 1980s onwards were reviewed, including studies used for the revision of the Korean PC program. PC has been calculated for compensation-related cases in Korea since 2005.
The United States National Institutes of Health first estimated the PC in 1985. Among the 106 occupational diseases listed in the International Labor Organization Recommendation 194 (International Labor Office (ILO), ILO List of Occupational Diseases, 2010), PC is available only for occupational cancer after ionizing radiation exposure. The United States and United Kingdom use PC as specific criteria for decisions on the compensability of workers’ radiation-related health effects. In Korea, PC was developed firstly as Korean Radiation Risk and Assigned Share (KORRAS) in 1999. In 2015, the Occupational Safety and Health Research Institute and Radiation Health Research Institute jointly developed a more revised PC program, Occupational Safety and Health-PC (OSH-PC). Between 2005 and 2015, PC was applied in 16 claims of workers’ compensation for radiation-related cancers. In most of the cases, compensation was given when the PC was more than 50%. However, in one case, lower than 50% PC was accepted considering the possibility of underestimation of the cumulative exposure dose.
PC is one of the most advanced tools for estimating the causation of occupational cancer. PC has been adjusted for baseline cancer incidence in Korean workers, and for uncertainties using a statistical method. Because the fundamental reason for under- or over-estimation is probably inaccurate dose reconstruction, a proper guideline is necessary.
Citations
Citations