Skip Navigation
Skip to contents

Ann Occup Environ Med : Annals of Occupational and Environmental Medicine

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse articles > Author index
Search
Hosub Im 2 Articles
Decline in non-smoking workers’ urine cotinine levels after increased smoking regulation in Korea
Ju-Hyoung Park, Chae-Kwan Lee, Se-Yeong Kim, Chunhui Suh, Kun-Hyung Kim, Jeong-Ho Kim, Byung-Chul Son, Jong-Tae Lee, Seung-Do Yu, Wookhee Choi, Hosub Im
Ann Occup Environ Med 2015;27:17.   Published online June 10, 2015
DOI: https://doi.org/10.1186/s40557-015-0066-z
AbstractAbstract PDFPubReaderePub
Objectives

To identify any association between implementing smoking regulation policies and workers’ urine cotinine concentration levels in Korea.

Methods

From the first stage of the Korean National Environmental Health Survey conducted by the National Institute of Environmental Research from 2009 to 2011, 2,475 non-smoking workers selected. We analyzed the trend in the changes of cotinine concentration in urine using the general linear model and linear regression, in various jobs as categorized by the National Center for Health Statistics (NCHS) and Korea Standard Classification of Occupations (KSCO).

Results

The urine cotinine concentration tended to decrease every year (2.91 ng/ml in 2009, 2.12 ng/ml in 2010, and 1.31 ng/ml in 2011), showing a decreasing trend (P < 0.001). The total subjects’ decreased cotinine concentration in urine between 2009 and 2011 was 2.72 ng/ml (54.1 % relative decrease). The changes in each subgroup’s urine cotinine concentration ranged from 1.59 to 6.03 ng/ml (33.2 to 77.5 %). All groups except for the managerial group (n = 49), which had a small sample size, had statistically significant negative regression coefficients (p < 0.05). The ranges of the decrease in urine cotinine were 2.75 ng/ml (53.6 %) for males and 2.72 ng/ml (54.9 %) for females. The negative slope in urine cotinine level was statistically significantly greater in men than women. The changes in urine cotinine by occupation as classified by the NCHS occupational categories ranged from 2.43 to 3.36 ng/ml (46.6 to 61.5 % relative decrease). The negative slopes in urine cotinine levels of the white-collar and farm workers were statistically significantly greater than those of the service workers and blue-collar workers. The change by occupation as classified by the KSCO ranged from 1.59 to 6.03 ng/ml (a 33.2 to 77.5 % relative decrease). The negative slopes in urine cotinine levels of the professionals and related workers and clerks were statistically significantly greater than those of the service workers and plant and machine operators and assemblers.

Conclusions

The cotinine concentration in urine among non-smoking worker groups tended to decline from 2009 to 2011. Such a result may be an indirect indicator of the effectiveness of smoking regulation policies including the revision of the National Health Promotion Act.


Citations

Citations to this article as recorded by  
  • Time trend of exposure to secondhand tobacco smoke and polycyclic aromatic hydrocarbons between 1995 and 2019 in Germany – Showcases for successful European legislation
    Therese Burkhardt, Max Scherer, Gerhard Scherer, Nikola Pluym, Till Weber, Marike Kolossa-Gehring
    Environmental Research.2023; 216: 114638.     CrossRef
  • Effects of municipal smoke-free ordinances on secondhand smoke exposure in the Republic of Korea
    Siwoo Kim, Yuri Lee, Changwoo Han, Min Kyung Kim, Ichiro Kawachi, Juhwan Oh
    Frontiers in Public Health.2023;[Epub]     CrossRef
  • Association between Pb, Cd, and Hg Exposure and Liver Injury among Korean Adults
    Do-Won Kim, Jeongwon Ock, Kyong-Whan Moon, Choong-Hee Park
    International Journal of Environmental Research and Public Health.2021; 18(13): 6783.     CrossRef
  • Public support for health taxes and media regulation of harmful products in South Korea
    Kyae Hyung Kim, EunKyo Kang, Young Ho Yun
    BMC Public Health.2019;[Epub]     CrossRef
  • Female non-smokers’ environmental tobacco smoking exposure by public transportation mode
    Seyoung Kim, Jin-Soo Park, Minkyu Park, Yeji Kim, Sinye Lim, Hye-Eun Lee
    Annals of Occupational and Environmental Medicine.2018;[Epub]     CrossRef
  • Exposure to environmental chemicals among Korean adults-updates from the second Korean National Environmental Health Survey (2012–2014)
    Wookhee Choi, Suejin Kim, Yong-Wook Baek, Kyungho Choi, Keejae Lee, Sungkyoon Kim, Seung Do Yu, Kyunghee Choi
    International Journal of Hygiene and Environmental Health.2017; 220(2): 29.     CrossRef
  • 79 View
  • 0 Download
  • 6 Web of Science
  • 6 Crossref
Close layer
Assessment of Arsenic Exposure by Measurement of Urinary Speciated Inorganic Arsenic Metabolites in Workers in a Semiconductor Manufacturing Plant
Kiwhan Byun, Yong Lim Won, Yang In Hwang, Dong-Hee Koh, Hosub Im, Eun-A Kim
Ann Occup Environ Med 2013;25:21-21.   Published online October 11, 2013
DOI: https://doi.org/10.1186/2052-4374-25-21
AbstractAbstract PDFPubReaderePub
Objectives

The purpose of this study was to evaluate the exposure to arsenic in preventive maintenance (PM) engineers in a semiconductor industry by detecting speciated inorganic arsenic metabolites in the urine.

Methods

The exposed group included 8 PM engineers from the clean process area and 13 PM engineers from the ion implantation process area; the non-exposed group consisted of 14 office workers from another company who were not occupationally exposed to arsenic. A spot urine specimen was collected from each participant for the detection and measurement of speciated inorganic arsenic metabolites. Metabolites were separated by high performance liquid chromatography-inductively coupled plasma spectrometry-mass spectrometry.

Results

Urinary arsenic metabolite concentrations were 1.73 g/L, 0.76 g/L, 3.45 g/L, 43.65 g/L, and 51.32 g/L for trivalent arsenic (As3+), pentavalent arsenic (As5+), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and total inorganic arsenic metabolites (As3+ + As5+ + MMA + DMA), respectively, in clean process PM engineers. In ion implantation process PM engineers, the concentrations were 1.74 g/L, 0.39 g/L, 3.08 g/L, 23.17 g/L, 28.92 g/L for As3+, As5+, MMA, DMA, and total inorganic arsenic metabolites, respectively. Levels of urinary As3+, As5+, MMA, and total inorganic arsenic metabolites in clean process PM engineers were significantly higher than that in the non-exposed group. Urinary As3+ and As5+ levels in ion implantation process PM engineers were significantly higher than that in non-exposed group.

Conclusion

Levels of urinary arsenic metabolites in PM engineers from the clean process and ion implantation process areas were higher than that in office workers. For a complete assessment of arsenic exposure in the semiconductor industry, further studies are needed.


Citations

Citations to this article as recorded by  
  • Examining carcinogenic and noncarcinogenic health risks related to arsenic exposure in Ethiopia: A longitudinal study
    Solomon Demissie, Seblework Mekonen, Tadesse Awoke, Birhanu Teshome, Bezatu Mengistie
    Toxicology Reports.2024; 12: 100.     CrossRef
  • Arsenic Exposure and Methylation Efficiency in Relation to Oxidative Stress in Semiconductor Workers
    Chih-Hong Pan, Ching-Yu Lin, Ching-Huang Lai, Hueiwang Anna Jeng
    Atmosphere.2020; 11(5): 464.     CrossRef
  • Arsenic burden in e-waste recycling workers – A cross-sectional study at the Agbogbloshie e-waste recycling site, Ghana
    Jennie Yang, Jens Bertram, Thomas Schettgen, Peter Heitland, Damian Fischer, Fatima Seidu, Michael Felten, Thomas Kraus, Julius N. Fobil, Andrea Kaifie
    Chemosphere.2020; 261: 127712.     CrossRef
  • Early Environmental Exposures and Contaminants: a Design Framework for Biospecimen Collection and Analysis for a Prospective National Birth Cohort
    Julie M. Croff, Ryan Bogdan, Sara B. Johnson, Ludmila N. Bakhireva
    Adversity and Resilience Science.2020; 1(4): 269.     CrossRef
  • Occupational Characteristics of Semiconductor Workers with Cancer and Rare Diseases Registered with a Workers' Compensation Program in Korea
    Dong-Uk Park, Sangjun Choi, Seunghee Lee, Dong-Hee Koh, Hyoung-Ryoul Kim, Kyong-Hui Lee, Jihoon Park
    Safety and Health at Work.2019; 10(3): 347.     CrossRef
  • Exposure assessment of process by-product nanoparticles released during the preventive maintenance of semiconductor fabrication facilities
    Bo-Xi Liao, Neng-Chun Tseng, Ziyi Li, Yingshu Liu, Jen-Kun Chen, Chuen-Jinn Tsai
    Journal of Nanoparticle Research.2018;[Epub]     CrossRef
  • Occupational Exposure to Arsenic and Cadmium in Thin-Film Solar Cell Production

    The Annals of Occupational Hygiene.2015;[Epub]     CrossRef
  • Considerations in deriving quantitative cancer criteria for inorganic arsenic exposure via inhalation
    Ari S. Lewis, Leslie A. Beyer, Ke Zu
    Environment International.2015; 74: 258.     CrossRef
  • Reproductive Hazards Still Persist in the Microelectronics Industry: Increased Risk of Spontaneous Abortion and Menstrual Aberration among Female Workers in the Microelectronics Industry in South Korea
    Inah Kim, Myoung-Hee Kim, Sinye Lim, Roger C. Young
    PLOS ONE.2015; 10(5): e0123679.     CrossRef
  • The separation of arsenic metabolites in urine by high performance liquid chromatographyinductively coupled plasma-mass spectrometry
    Jin-Yong Chung, Hyoun-Ju Lim, Young-Jin Kim, Ki-Hoon Song, Byoung-Gwon Kim, Young-Seoub Hong
    Environmental Health and Toxicology.2014; 29: e2014018.     CrossRef
  • 62 View
  • 0 Download
  • 12 Web of Science
  • 10 Crossref
Close layer

Ann Occup Environ Med : Annals of Occupational and Environmental Medicine
Close layer
TOP