Skip Navigation
Skip to contents

Ann Occup Environ Med : Annals of Occupational and Environmental Medicine

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse articles > Author index
Search
Yang In Hwang 1 Article
Assessment of Arsenic Exposure by Measurement of Urinary Speciated Inorganic Arsenic Metabolites in Workers in a Semiconductor Manufacturing Plant
Kiwhan Byun, Yong Lim Won, Yang In Hwang, Dong-Hee Koh, Hosub Im, Eun-A Kim
Ann Occup Environ Med 2013;25:21-21.   Published online October 11, 2013
DOI: https://doi.org/10.1186/2052-4374-25-21
AbstractAbstract PDFPubReaderePub
Objectives

The purpose of this study was to evaluate the exposure to arsenic in preventive maintenance (PM) engineers in a semiconductor industry by detecting speciated inorganic arsenic metabolites in the urine.

Methods

The exposed group included 8 PM engineers from the clean process area and 13 PM engineers from the ion implantation process area; the non-exposed group consisted of 14 office workers from another company who were not occupationally exposed to arsenic. A spot urine specimen was collected from each participant for the detection and measurement of speciated inorganic arsenic metabolites. Metabolites were separated by high performance liquid chromatography-inductively coupled plasma spectrometry-mass spectrometry.

Results

Urinary arsenic metabolite concentrations were 1.73 g/L, 0.76 g/L, 3.45 g/L, 43.65 g/L, and 51.32 g/L for trivalent arsenic (As3+), pentavalent arsenic (As5+), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and total inorganic arsenic metabolites (As3+ + As5+ + MMA + DMA), respectively, in clean process PM engineers. In ion implantation process PM engineers, the concentrations were 1.74 g/L, 0.39 g/L, 3.08 g/L, 23.17 g/L, 28.92 g/L for As3+, As5+, MMA, DMA, and total inorganic arsenic metabolites, respectively. Levels of urinary As3+, As5+, MMA, and total inorganic arsenic metabolites in clean process PM engineers were significantly higher than that in the non-exposed group. Urinary As3+ and As5+ levels in ion implantation process PM engineers were significantly higher than that in non-exposed group.

Conclusion

Levels of urinary arsenic metabolites in PM engineers from the clean process and ion implantation process areas were higher than that in office workers. For a complete assessment of arsenic exposure in the semiconductor industry, further studies are needed.


Citations

Citations to this article as recorded by  
  • Examining carcinogenic and noncarcinogenic health risks related to arsenic exposure in Ethiopia: A longitudinal study
    Solomon Demissie, Seblework Mekonen, Tadesse Awoke, Birhanu Teshome, Bezatu Mengistie
    Toxicology Reports.2024; 12: 100.     CrossRef
  • Arsenic Exposure and Methylation Efficiency in Relation to Oxidative Stress in Semiconductor Workers
    Chih-Hong Pan, Ching-Yu Lin, Ching-Huang Lai, Hueiwang Anna Jeng
    Atmosphere.2020; 11(5): 464.     CrossRef
  • Arsenic burden in e-waste recycling workers – A cross-sectional study at the Agbogbloshie e-waste recycling site, Ghana
    Jennie Yang, Jens Bertram, Thomas Schettgen, Peter Heitland, Damian Fischer, Fatima Seidu, Michael Felten, Thomas Kraus, Julius N. Fobil, Andrea Kaifie
    Chemosphere.2020; 261: 127712.     CrossRef
  • Early Environmental Exposures and Contaminants: a Design Framework for Biospecimen Collection and Analysis for a Prospective National Birth Cohort
    Julie M. Croff, Ryan Bogdan, Sara B. Johnson, Ludmila N. Bakhireva
    Adversity and Resilience Science.2020; 1(4): 269.     CrossRef
  • Occupational Characteristics of Semiconductor Workers with Cancer and Rare Diseases Registered with a Workers' Compensation Program in Korea
    Dong-Uk Park, Sangjun Choi, Seunghee Lee, Dong-Hee Koh, Hyoung-Ryoul Kim, Kyong-Hui Lee, Jihoon Park
    Safety and Health at Work.2019; 10(3): 347.     CrossRef
  • Exposure assessment of process by-product nanoparticles released during the preventive maintenance of semiconductor fabrication facilities
    Bo-Xi Liao, Neng-Chun Tseng, Ziyi Li, Yingshu Liu, Jen-Kun Chen, Chuen-Jinn Tsai
    Journal of Nanoparticle Research.2018;[Epub]     CrossRef
  • Occupational Exposure to Arsenic and Cadmium in Thin-Film Solar Cell Production

    The Annals of Occupational Hygiene.2015;[Epub]     CrossRef
  • Considerations in deriving quantitative cancer criteria for inorganic arsenic exposure via inhalation
    Ari S. Lewis, Leslie A. Beyer, Ke Zu
    Environment International.2015; 74: 258.     CrossRef
  • Reproductive Hazards Still Persist in the Microelectronics Industry: Increased Risk of Spontaneous Abortion and Menstrual Aberration among Female Workers in the Microelectronics Industry in South Korea
    Inah Kim, Myoung-Hee Kim, Sinye Lim, Roger C. Young
    PLOS ONE.2015; 10(5): e0123679.     CrossRef
  • The separation of arsenic metabolites in urine by high performance liquid chromatographyinductively coupled plasma-mass spectrometry
    Jin-Yong Chung, Hyoun-Ju Lim, Young-Jin Kim, Ki-Hoon Song, Byoung-Gwon Kim, Young-Seoub Hong
    Environmental Health and Toxicology.2014; 29: e2014018.     CrossRef
  • 62 View
  • 0 Download
  • 12 Web of Science
  • 10 Crossref
Close layer

Ann Occup Environ Med : Annals of Occupational and Environmental Medicine
Close layer
TOP